Application Development
Using the Versata Logic Suite
for WebSphere

Learn options for automating business
logic in the EJB-layer

Explore declarative logic design
using rules

~ Understand Versata Logic
rvices in WebSphere

Jackie McAlex
Wilbe rtKh

ibm.com/redbooks REd h OOkS

International Technical Support Organization

Application Development Using the Versata Logic Suite
for WebSphere

December 2002

SG24-6510-00

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

First Edition (December 2002)

This edition applies to the Versata Logic Suite 5.5.1.

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices vii
Trademarks viii
Preface iX
The team that wrote thisredbook. ix
Become a published author X
Comments Welcome.ot Xi
Chapter 1. Overview of self-service pattern. 1
1.1 Patterns, defined 2
1.2 IBM Patterns fore-business 2
1.2.1 Businesspatterns 4
1.2.2 Using patterns fore-business L. 4
1.3 Self-service business pattern 5
1.3.1 Self-service applicationpatterns., 6
1.4 Self-service pattern and the Trade application 8
Chapter 2. Trade application overview 9
2.1 Trade application functionality. 10
2.1.1 Trade clientdesignusingMVC 11
2.1.2 Multiple runtimemodes. i 12
2.2 Versata:anew oplion 14
2.3 Details of the Trade EJB implementation 15
2.3.1 Databaseschema............. ... i 15
2.3.2 Containermanaged EJBs i 16
2.3.3 Use of copy helperaccessbeans........................... 17
2.3.4 BasicbusinesslogicinTrade, 17
2.4 Potential enhancements to Trade business logic 18
Chapter 3. Business logic automation usingrules 19
3.1 Scenarios for automating WebSphere applications 20
3.2 Design and runtime environment 21
3.3 Transaction rules for automated business logic 22
3.3.1 Exampleofarule 22
3.3.2 Characteristicsofrules 24
3.33 RulesandEJBdomains 25
3.3.4 Classification of declarative logic (rules). 26
3.4 Businessusesofrules 31
3.5 What the Versata Logic Suiteisnot 36

© Copyright IBM Corp. 2002. All rights reserved. iii

iv

Chapter 4. Architecture of the Versata Logic Server within WebSphere . 39

4.1 What the Versata Logic Server is, and howitworks................. 40
4.2 Managing the Versata Logic Serverin WebSphere 41
4.3 Versata businessobjects 43
4.4 Versata Logic Serverclasses, 44
4.4.1 Persistence as alayerintheserverMVC..................... 45
4.4.2 Rule-enabled objects as WebSphere components.............. 46
4.4.3 ResultSet access and just-in-time object instantiation 47
4.5 Lookingto the future: EJB2.0and JCA 51
4.5.1 EJB 2.0: Container Managed Relationships (CMR) 52
452 EJB20:localinterfaces 53
4.5.3 Java Connector Architecture (JCA). 53
4.5.4 Other J2EE standards used by the logicserver 53
4.5.5 Recap of the Versata logic services 54
Chapter 5. Rule-based development.............................. 57
5.1 Introducing Versata Studio Business Logic Designer................ 58
5.1.1 Projectapproachesandroles.............. 58
5.1.2 Versata repository 60
5.2 Step 1: Importing anobjectmodel. L. 60
5.3 Step 2: Adding relationshiprules. 62
5.4 Step 3: Identifying additionalrules 64
5.5 Reviewofthe steps. i 72
Chapter 6. Designing an HTML client application 73
6.1 Versata Presentation Designer 74
6.2 Overview of the completed application 76
6.2.1 Login pageo e 76
6.22 HOome pageo 78
6.2.3 QuoteBuy paget 79
6.2.4 Portfoliopageo 80
6.25 Profilepage. ... 81
6.3 Beginning applicationdesign. i 82
6.3.1 Choosing the application style 82
6.3.2 Archetypes: abriefoverview.......... 83
6.3.3 Designingthe Homepage............ 84
6.3.4 Designing the QuoteBuypage 94
6.3.5 Creating the Portfoliopage i ot 101
6.3.6 Creatingthe Profilepage 101
6.4 Completing the applicationdesign 102
Chapter 7. Deploying the TradeX application...................... 103
7.1 Business objectdeployment L. 104
7.2 Database deployment 106

Application Development Using the Versata Logic Suite for WebSphere

7.2.1 Setting up an ODBC Data Source Name (DSN). 106

7.3 Reviewing or settingthe dataserver. 108
7.4 Grantingaccessto TradeX USers, 112
7.5 Client applicationdeployment i 114
7.6 Executing deployed applications. 117
7.7 Generating business and application logic reports 118
Chapter 8. Enhancing TradeX business logic. 119
8.1 New requirements. i 120
8.2 The TradeXv2 repository.o e e 120
8.2.1 Requirement 1: Sell partial holdings 121
8.2.2 Requirement 2: Customize rules based on accounttype 135
8.2.3 Requirement 3: Calculate commissions based on account type. . . 137
8.2.4 Requirement 4: Limit marginselling 139
8.3 Modified client application using new businesslogic 142
8.3.1 Capability 1: Creating QueryObjects. 142
8.4 The TradeXv2 application i, 147
8.5 Concluding the TradeX extended businesslogic 149
Chapter 9. Integrating the IBM Trade2 client 151
9.1 Method 1: Using the Versata client libraries 152
9.1.1 The TradeAltAccessclassfromIBM........................ 152
9.1.2 Changes to TradeAltAccess to accommodate Versata. 153
9.1.3 TradeVFC.java 154
9.1.4 The TradeVFC buy()method 156
9.1.5 The TradeVFC getPortfolio() method 159
9.2 Method 2: Utilizing EJBinterfaces. 160
9.3 Alternative for JSP access: Versata JSP Toolkit. 163
9.3.1 Supported functionality 164
9.3.2 Tag library overview 165
9.4 CoNCIUSION. . ..ot 165
Chapter 10. Integrating Versata Logic Suite with WebSphere Studio
Application Developer 167
10.1 Introduction 168
10.1.1 WebSphere Studio Application Developer 168
10.1.2 Integrated testing with WebSphere Application Server. 168
10.2 Versata Logic Server within WSAD. 169
10.2.1 Preparing Versata application for import into WSAD 169
10.2.2 Importing applications into WSAD. 171
10.2.3 Configuring the server to test the application 182
10.2.4 Running and debugging the application 187
10.3 Importing modified application intoVersata 191
10.3.1 Exporting the application from WSAD. 191

Contents v

10.3.2 Import the application into the repository 191

Chapter 11. Developing with UML andrules. 193
11.1 UML and the Rational Unified Process 194
11.2 RUP phases anditerations 194
11.2.1 Versata and the Inceptionphase 194
11.2.2 Versata and the Elaborationphase. 199
11.2.3 Versata and the Constructionphase. 205
11.2.4 Versata and the Transitionphase 208
11.3 Conclusion: Rule-based design and development 209

Chapter 12. A Versata Case Study: American Management Systems . . 211

12.1 The technical decisionprocess. 213
12.2 The Versatadecision. e 214
12.3 The project 215
12.3.1 Theteam. e 215
12.3.2 The application 216
12.3.3 A specificlook atperformance 217
12.3.4 System architecture 219
12.3.5 Theschedule. 221
12.3.6 Development/deploymentissues 222
12.4 The bottom line andthe future 222
Appendix A. Benchmarkresults 225
Benchmark configuration 226
ReSURS . .. e 227
Extrapolation to extended Trade2logic 228
Appendix B. Additional material 229
Locating the Web material 229
Usingthe Web material i 229
System requirements for downloading the Web material 230
How to use the Web material 230
Related publications 231
IBM Redbooks 231
Referenced Web sites 231
HowtogetIBM Redbooks 231
IBM Redbooks collections. 232
INdeX e 233

Vi Application Development Using the Versata Logic Suite for WebSphere

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2002. All rights reserved. vii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Balance® MQSeries® S/390®
CICS® 0S/390® Sp™

DB2® Perform™ VisualAge®
IBM® Redbooks™ WebSphere®
IBM eServer™ Redbooks (logo)™ @

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® Word Pro®

The following terms are trademarks of other companies:

Versata, Versata Studio, Versata Interaction Server, Versata E-Business Automation System, Versata Logic
Server, Versata Connections, Versata Presentation Server, Versata Adapters are trademarks of the Versata
Corporation in the United states, other countries, or both.

PowerEdge is a trademark of Dell Inc. in the United states, other countries, or both.

PowerBuilder is a trademark of Sybase Inc. in the United States, other countries, or both.

TurboTax is a trademark of Intuit Inc. in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Visual Basic, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

viii Application Development Using the Versata Logic Suite for WebSphere

Preface

Patterns for e-business are a group of proven, reusable assets that can help
speed the process of developing applications. This IBM Redbook demonstrates a
method of developing and managing the business logic in the “self-service
business pattern” (formerly known as the user-to-business pattern).

The book describes the process of developing a stock trading application, based
on the IBM “Trade” benchmark, using business logic rules to automate the
construction and interaction of the transactional (EJB) components. It
demonstrates substantially enhancing the business logic of the application
through rule changes.

Two methods of constructing the presentation layer of the application are
examined. The first uses Versata presentation automation techniques. The
second adopts the Model-View-Controller (MVC) framework of the existing IBM
Trade application.

The book demonstrates how to use the JSPs, servlets, and Java beans of the
existing Trade application to interface to the EJB-based business logic and
explains the role of the runtime Versata logic services installed into the
WebSphere Application Server.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Jackie McAlexander is a Software Architect and Sr. Marketing Technical
Manager at Versata, Inc. Over the last 2 years she has extensively supported
and documented the integration of the Versata Logic Server and WebSphere.
With over 15 years of system design experience in databases, object-oriented
technology, and Java, Jackie holds a degree in Computer Science from the
University of Maryland.

© Copyright IBM Corp. 2002. All rights reserved. ixX

Wilbert Kho is a member of the Worldwide WebSphere Technical Sales
organization, IBM Software Group. He has over 15 years of experience in the
Information Technology (IT) industry, ranging from operating systems security for
large scale systems to object-oriented technology and application servers. Over
the last 2 years, he has been focused on WebSphere and Versata. He holds a
degree in Electrical Engineering from the University of the Philippines, a Masters
of Science in Computer Science degree from Northern lllinois University, and an
M.B.A. from the University of Phoenix.

Thanks to the following people for their contributions to this project:
Val Huber, Chief Technical Officer, Versata

Nilesh Jain, Versata, Oakland, CA

Jim Liddle, Versata, United Kingdom

Alex Rubin, Versata, Oakland, CA

Richard Scott, Versata, Phoenix, AZ

Steven Sweeting, Versata, Oakland, CA

Max Tardiveau, Versata, Oakland, CA

Joe DeCarlo, IBM International Technical Support Organization, San Jose, CA

Become a published author

X

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Application Development Using the Versata Logic Suite for WebSphere

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!
We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:
ibm. com/redbooks
» Send your comments in an Internet note to:
redbook@us. ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. 1WLB Building 80-E2254

650 Harry Road

San Jose, California 95120-6099

Preface

Xi

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xii Application Development Using the Versata Logic Suite for WebSphere

Overview of self-service
pattern

In this chapter we introduce patterns for software development. We describe the
IBM Patterns for e-business, which are a group of reusable assets that can help
speed the process of developing Web-based applications. These reusable
assets consist of Business patterns, Integration patterns, Composite patterns,
Application and Runtime patterns, and others.

In this redbook we have chosen to focus on the Business patterns, as Versata
business logic automation provides a way to create end-to-end e-business
applications that match the Self-Service business pattern, Stand-Alone Single
Channel, or Directly Integrated Single Channel application patterns.

© Copyright IBM Corp. 2002. All rights reserved. 1

1.1 Patterns, defined

Webster’s dictionary defines pattern as a model or plan used as a guide in
making things. As such, patterns serve to facilitate the development and
production of things. Patterns codify the repeatable experience and knowledge of
people who have performed similar tasks before. Patterns not only document
common solutions to common problems but also point out pitfalls that should be
avoided.

The computer industry has seen rapid advances in hardware that were driven in
good measure by the use of standards and well specified components for
assembly. The software development community has been searching for ways to
build better and more reliable software in the quickest time possible. The
adoption of similar approaches used in computer hardware development to
software construction gave rise to object-oriented design and development,
application frameworks, design patterns, and component-based development.

IBM has also developed a methodology for planning and designing e-business
system architectures and has named this approach the IBM Patterns for
e-business.

Tip: The IBM Patterns for e-business Web site is at:

http://www.ibm.com/developerworks/patterns

Visit this site for updated information and links to other resources.

1.2 IBM Patterns for e-business

2

Patterns for e-business are a group of reusable assets that can help speed the
process of developing Web-based applications. These reusable assets consist of
the following elements:

» Business patterns: These identify the interaction between users,
businesses, and data. Business patterns are used to create simple,
end-to-end e-business applications.

» Integration patterns: These connect other Business patterns together to
create applications with advanced functionality. Integration patterns are used
to combine Business patterns in advanced e-business applications.

» Composite patterns: These are combinations of Business patterns and
Integration patterns that have themselves become commonly used types of
e-business applications. Composite patterns are advanced e-business
applications.

Application Development Using the Versata Logic Suite for WebSphere

http://www.ibm.com/developerworks/patterns

» Application and Runtime patterns: These are driven by the customer's
requirements and describe the shape of applications and the supporting
runtime needed to build the e-business application.

» Product mappings: These are used to populate the solution. The product
mappings are based on proven implementations.

» Guidelines: These are supplied for the design, development, deployment,
and management of e-business applications.

Using an approach based on the IBM Framework for e-business, the Patterns
leverage the experience of IBM architects to create solutions quickly, whether for
a small local business or a large multinational enterprise. As shown in Figure 1-1,
customer requirements are quickly translated through the different levels of
Patterns assets to identify a final solution design and product mapping
appropriate for the application being developed.

Customer Requirements

Composite patterns

A Business patterns

Application patterns

Integration patterns

Runtime patterns

Product mappings

Figure 1-1 Patterns for e-business

The patterns are designed to meet 80% of most common customer
requirements. If you use the patterns within a structured development
methodology, you can extend their scope to meet almost all of your customer's
requirements.

Chapter 1. Overview of self-service pattern 3

The Patterns for e-business are structured in a way that each level of detail
builds on the last. At the highest level are Business patterns that describe the
entities involved in the e-business solution. A Business pattern describes the
relationship between the users, the business organization or applications, and
the data to be accessed. The remainder of this chapter will focus on Business
patterns, with emphasis on the Self-service pattern since the Versata business
logic automation will be an implementation of this.

1.2.1 Business patterns

There are four primary Business patterns:

» Self-service pattern: This was formerly known as the User-to-Business
pattern, which describes situations where users are interacting with a
business application to view or update data.

» Collaboration pattern: This was formerly known as the User-to-User
pattern, which describes the interaction between users. This would included
e-mail and workflow processes.

» Information Aggregation pattern: This was formerly known as the
User-to-Data pattern, which describes situations where users access and
manipulate large amounts of data collected from multiple sources.

» Extended Enterprise: This was formerly known as the Business-to-Business
pattern, which describes the programmatic interaction between two distinct
businesses.

1.2.2 Using patterns for e-business

4

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things will often be more complicated. The patterns assume that
all problems, when broken down into their most basic components will fit one of
these patterns. When a problem describes multiple objectives that fit into multiple
business patterns, the Patterns for e-business provide the solution in the form of
Integration patterns.

Integration patterns allow us to tie together multiple business patterns to solve a
problem. When the same combination of Business and Integration patterns has
been identified in the marketplace we refer to the combination as a Composite
pattern. Several common uses of Business and Integration patterns have been
identified and formalized into Composite patterns.

Application Development Using the Versata Logic Suite for WebSphere

Once the business pattern is identified, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern will usually
have multiple application patterns identified that describe the possible logical
components and their interactions. For example, an Application pattern may
have logical components that describe a presentation tier for interacting with
users, a Web application tier, and a back-end application tier.

The Application pattern is further refined and broken down into one or more
Runtime patterns. Runtime patterns define functional nodes that represent
middleware functions that must be performed. The Application pattern exists as
an abstract representation of high-level functions, whereas the Runtime pattern
is a more concrete representation of the functions that must be performed, the
network structure to be used, and the systems management features, such as
load balancing and security.

Once a Runtime pattern has been identified, the next logical step is to determine
the actual product and platform to use for each node. The Patterns for
e-business have Runtime Product mappings that correlate to Runtime patterns,
describing actual products that have been used to build an e-business solution
for this situation.

Finally, guidelines assist you in creating the application using best practices that
have been identified through experience.

1.3 Self-service business pattern

Businesses have traditionally invested a lot of resources into making information
available to customers, vendors, and employees. These resources took the form
of call-centers, mailings, etc. They have also maintained information about their
customers in the form of customer profiles. Updates to these profiles were
usually handled over the phone or by mail.

The concept of self-service makes this puts this information at the fingertips of
the customers through a user interface, whether that interface be a Web site, a
PDA, or some other client interface. An e-business application makes the
information accessible to the right audience in an easy-to-access manner, thus
reducing the need for human interaction and increasing user satisfaction.

Key elements of an application that provides self-service for a customer would
include elements that provide clear navigational directions, extended search
capabilities, and useful links. A popular aspect is to provide a direct link to the
online representatives that can answer questions and provide a human interface
if needed.

Chapter 1. Overview of self-service pattern 5

The following are examples of self-service applications:

'S

An insurance company makes policy information available to users and
allows them to apply for a policy online.

A mortgage company publishes information about its loan policies and load
rates online. Customers can view their current mortgage information, change
their payment options, or apply for a mortgage online.

A scientific organization makes research papers available to interested users
by putting it online.

A bank allows customers to access their accounts and pay bills online.

A well-known and respected group of technical writers make their work
available online. They recruit technical participants for their projects by listing
the upcoming projects online and allowing possible participants to apply
online.

A company allows its employees to view current human resource policies
online. Employees can change their medical plan, tax withholding
information, stock purchase plan, etc. online without having to call the HR
office.

1.3.1 Self-service application patterns

As you can see, the Self-Service business pattern covers a wide range of uses.
Applications of this pattern can range from the very simple function of allowing
users to view data built explicitly for one purpose, to taking requests from users,
decomposing them into multiple requests to be sent to multiple, disparate data
sources, personalizing the information, and recomposing it into a response for
the user. For this reason, there are currently seven defined application patterns
that fit this range of function.

1.

Stand-alone single channel pattern: Provides for stand-alone applications
that have no need for integration with existing applications or data. It assumes
one delivery channel, most likely a Web client, although it could be something
else. It consists of a presentation tier that handles all aspects of the user
interface, and an application tier that contains the business logic to access
data from a local database. The communication between the two tiers is
synchronous. The presentation tier passes a request from the user to the
business logic in the Web application tier. The request is handled and a
response sent back to the presentation tier for delivery to the user.

Directly integrated single channel pattern: Provides point-to-point
connectivity between the user and existing back-end applications. As with the
Stand-alone Single Channel, it assumes one delivery channel and the user
interface is handled by the presentation tier. The business logic can reside in
the Web application tier and in the back-end application. The Web application

6 Application Development Using the Versata Logic Suite for WebSphere

tier has access to local data that exists primarily as a result of this application,
or example, customer profile information or cached data. It is also responsible
for accessing one or more back-end applications. The back-end applications
contain business logic and are responsible for accessing the existing
back-end data. The communication between the presentation tier and Web
application tier is synchronous. The communication between the Web
application tier and the back-end can be either synchronous or asynchronous,
depending on the characteristics and capabilities of the back-end application.

. As-is host pattern: Provides simple direct access to existing host
applications. The application is unchanged, but the user access is translated
from green-screen type access to Web browser-based access. This is very
quickly implemented but does nothing to change the appearance of the
application to the user. The business logic and presentation are both handled
by the back-end host. Because the interface is still host driven, this is more
suited to an intranet solution where employees are familiar with the
application.

. Customized presentation to host pattern: This is one step up from the
As-is Host pattern. The back-end host application remains unchanged, but a
Web application now translates the presentation from the back-end host
application into a more user-friendly, graphical view. The back-end host
application is not aware of this translation.

. Router pattern: The router pattern provides intelligent routing from multiple
channels to multiple back-end applications using a hub-and-spoke
architecture. The interaction between the user and the back-end application is
a one-to-one relation, meaning the user interacts with applications one at a
time. The router maintains the connections to the back-end applications and
pools connections when appropriate, but there is no true integration of the
applications themselves. The router can use a read-only database, most
probably to look up routing information. The primary business logic still
resides in the back-end application tier.

This pattern assumes that the users are accessing the applications from a
variety of client types such as Web browsers, VRUs, or kiosks. The router
provides a common interface for accessing multiple back-end applications
and acts as an intermediary between them and the delivery channels. In
doing this, the application pattern may use elements of the Integration
patterns.

. Decomposition pattern: The decomposition pattern expands on the router
pattern, providing all the features and functions of that pattern and adding
recomposition/decomposition capability. It provides the ability to take a user
request and decompose it into multiple requests to be routed to multiple
back-end applications. Responses are recomposed into a single response for
the user. This moves some of the business logic into the decomposition tier,
but the primary business logic still resides in the back-end application tier.

Chapter 1. Overview of self-service pattern 7

7. Agent pattern: The Agent pattern includes the functions of the
decomposition tier, plus it incorporates personalization into the application to
provide a customer-centric view. The agent tier collects information about the
user, either from monitoring their habits or from information stored in a CRM.
It uses this information to customize the view presented to the user and can
perform cross-selling functions by pushing offers to the user.

1.4 Self-service pattern and the Trade application

8

Trade is an end-to-end Web application modeled after an online brokerage. Trade
leverages J2EE components such as servlets, JSPs, EJBs, and JDBC to provide
a set of user services such as login/logout, stock quotes, buy, sell, account
details, etc., through a standards based HTTP protocol. This is a typical
self-service application where the customer end-user interacts with a
presentation tier that communicates with business logic on an application tier.
The business logic on the application tier manages the required data access.

In its simplest form, the Trade application fits the Stand-alone Single Channel
application pattern. It is easy to envision a Trade system that accesses existing
data on backend tiers and interacts with backend applications; thus, becoming
an application that matches the Directly Integrated Single Channel application
pattern.

Chapter 2, “Trade application overview” on page 9 introduces the Trade
application and subsequent chapters discuss the development and enhancement
of elements of the Trade application using the capabilities of Versata business
logic automation for WebSphere.

Application Development Using the Versata Logic Suite for WebSphere

Trade application overview

As an example of the Self-service business pattern, a stand-alone single
Channel application pattern gives us a starting point for understanding the Trade
application.

Tip: An IBM created benchmark is available at:

http://www.ibm.com/software/webservers/appserv/wpbs_download.html

The business logic in Trade will be automated using rules as a part of the
activities for this redbook.

Trade is an end-to-end Web application modeled after an online brokerage. Trade
leverages J2EE components such as servlets, JSPs, EJBs, and JDBC to provide
a set of user services such as login/logout, stock quotes, buy, sell, account
details, and so forth, through a standards based HTTP protocol.

© Copyright IBM Corp. 2002. All rights reserved. 9

http://www.ibm.com/software/webservers/appserv/wpbs_download.html

2.1 Trade application functionality

Paformanee Applicaion

Orverview

Technical
Documentation

Benchmatking
Configuration
Gio Trade!
Web Primitives

Setup Instructions

Powered By
WebSphere

e-husiness

i

Figure 2-1 illustrates the Home Page. Trade provides HTML buttons to initiate the
following functions:
» Register a new user to establish an account and profile.

» Login to the application. The user name and password are validated from a
database table and a session is created.

» View the Home Page. The page is displayed with the user's current balance
and current market conditions.

» Review and update an account. This allows the user to view and modify his
profile.

» Obtain security quotes and purchase stock. Each purchase establishes a new
portfolio “holding” for the user.

» View the portfolio. The page is displayed with all of the user's holdings.
Holdings may be sold from the portfolio. Holdings must be sold in their
entirety, for example, you can't sell 10 shares from a 100 share holding.

» Logoff from the Trade application and close the user session.

1BM g X 0
WebSphere @ @

WebSphere Performance Benchmark Sample

Status Logm operation successfil, User md 1 has been logged m
Current Market Conditions
Dowr Jones Budnstrial 10,000 (+25)
Hasdag Composits 4400 (+35)

Welcome wd:1
Your current account balance is: $239556.0

Please select from the available services listed below. Go Tradel

Haome | Account | Porttolio | Cuote/Buy Isj Lag Off

Created with [BM WebSphere & dvanced, Visual A ge for Java and WebSphere Studio
Copyright 2000, [EM Corperarion

Figure 2-1 Trade user's home page

10 Application Development Using the Versata Logic Suite for WebSphere

Although the Trade application was primarily designed to test specific aspects of
WebSphere performance, it has a well-designed Model-View-Controller
architecture that is very useful as a case study of J2EE programming techniques.

2.1.1 Trade client design using MVC

As described in the Self-service Pattern Redbook, the Model-View-Controller
(MVC) architecture, illustrated in Figure 2-2, is a common way of partitioning
applications for maximum flexibility, maintainability, and reuse.

In MVC, a Model component represents an application object that implements
the application data and business logic. A View component is responsible for
formatting the application results and dynamic page construction. The Controller
component is responsible for receiving client requests, invoking the appropriate
business logic, and based on the results, selecting the appropriate view to be
presented to the user.

Interaction
Cartrallar -

/ Controller
HTML —_— Business Logic
JavaScript

Model

Browser Client Page
Construction

View

Figure 2-2 Model-View-Controller architecture

In the Trade application, the Controller is implemented as a servlet and several
Java classes. The main controller servlet, TradeAppServlet, provides a standard
Web interface to Trade users. It maps user input, such as requests to “Buy” or
“Update Account”, to actions handled by an event handler class,
TradeServletAction.

When an action is sent to TradeServletAction, it invokes the appropriate method
from an implementation class, TradeAction, and matches the output of the action
to its specific JSP. The controller is illustrated in Figure 2-3.

Chapter 2. Trade application overview 11

TP . md i T e

To——*
Ifodel

Broveser Client

Figure 2-3 Trade application controller implementation

In the Trade client, JSPs provide the Views. The TradeAction class also
interfaces to the Model, which, as we shall see below, can be configured in a
number of ways. This four-step process, while seeming a little more complex
than normal, allows for maximum flexibility when configuring the runtime
behavior of the Trade application.

2.1.2 Multiple runtime modes

One of the most interesting features of Trade is the ability to choose, through
set-up parameters, a runtime “mode” of the application. One mode of operation
implements business logic and transactions (the Model in the MVC architecture)
in the client-tier using simple Java classes. In this mode, data is accessed
directly from the database through JDBC. This is illustrated in Figure 2-4.

12 Application Development Using the Versata Logic Suite for WebSphere

Trade
Client
Direct JDBC Access
Option 1 1 4
Option 2
Trade
; Database

Option 3

EJB Container

Figure 2-4 Multiple runtime modes

Two other modes implement business logic and transactions in the EJB-tier,
using a stateless session EBJ, TradeBean, to implement most of the business
methods. Database access is implemented using an entity bean for each of the
database tables. Persistence is managed through the WebSphere EJB container
using container managed persistence (CMP). The two EJB modes differ in the
way that they access the Trade session and entity EJBs. One mode uses
optimized EJB access beans, generated by VisualAge for Java. The other uses
direct, remote, EJB access from the client.

The purpose of multiple Trade modes is to compare the performance of JDBC
versus both forms of EJB access. Readers can also examine each
implementation to judge its relative ease-of-use.

In the application documentation, Trade developers discuss the tradeoffs
between JDBC and EJB access. They note that well-written JDBC code will
generally outperform the EJB equivalent, while JDBC may be significantly more
complex to develop and maintain. Most of the JDBC complexity comes from the
need to explicitly manage transactions and difficulty with logic re-use when
business logic is placed in the client-tier.

Chapter 2. Trade application overview 13

In summary, data for the Trade application is kept in a relational database and
Trade provides three, distinct, paths to the data:

» JDBC to database access using direct JDBC calls from the Web tier
(no EJBs)

» EJB to DB access using EJB container managed persistence by leveraging
IBM VisualAge for Java EJB Access Beans for EJB access.

» EJB to DB access using direct EJB access by leveraging EJB Access Beans

2.2 Versata: a new option

The reason for choosing the Trade application as a starting point for this
Redbook is the flexibility provided by the MVC architecture. Because of this, we
can easily implement a fourth and fifth option — accessing the database through
business objects managed by the Versata Logic Server.

As we shall see in Chapter 4, “Architecture of the Versata Logic Server within
WebSphere” on page 39, these objects contain business logic designed through
declarative rules. The rule-enabled objects are installed into a WebSphere EJB
container where they execute using runtime services provided by the Versata
Logic Server, as shown in Figure 2-5.

Trade
Client

Option 4 Verzata

Client VEI'SEH&
Libraries i
Logic | ™
Option 5 Server

EIE

Eemote

Trade

Interfaces Database

EJB Container

Figure 2-5 Versata Logic Server

14 Application Development Using the Versata Logic Suite for WebSphere

Versata rule-enabled EJBs can be accessed from the Trade client, through their
EJB interfaces, and through the Versata Logic Server client libraries. The client
library option is most closely examined for its potential to bridge the EJB-JDBC
gap, encapsulating business logic in the EJB tier while providing higher-speed
access from client applications.

2.3 Details of the Trade EJB implementation

We conclude this chapter by examining the Trade EJB implementation in more
detail. This will allow us to understand the Versata implementation more easily.

2.3.1 Database schema

The database schema to support Trade is straightforward, as illustrated in Figure

2-6.
1 Frofile
1 lserll}
£ oo ouant Fullname
Ernail
IID 1
£ddress
?ah“iimns Crediteard
1 1
Begistry
L n LTID
- Password
Hold m
DL Status
TTserdDy
Tl X
Saanbol ‘Juote
Price
Cramtity Sxambol
Price
Details

Figure 2-6 Database scheme

Chapter 2. Trade application overview 15

There are five database tables:
» Account: This holds the user ID and current balance.

» Profile: This provides more information about the user, such as address and
e-mail.

» Quote: This holds stock symbols and descriptions.

» Holding: This holds the result of a Buy operation. A holding row contains the
user ID, the stock symbol, the quantity purchased, and the purchase price of
the stock (per share).

» Registry: This holds the user ID, password, and status. Authentication and
authorization in Trade is done through the application. This is a departure
from a normal Topology 1 design that relies on WebSphere to authenticate
users.

2.3.2 Container managed EJBs

There are five container managed entity EJBs that correspond to each of the
Trade database tables. Each EJB implements the get and set methods for its
own attributes. In addition, each entity EJB provides a findByPrimaryKey()
method that allows the database row corresponding to the object to be retrieved
by its unique index.

EJBs that need to support more complex queries use “Finder Helper” classes for
each potential query structure. An example is the HoldingBeanFinderHelper
class, which implements methods to find holdings by user ID, find the maximum
holding index number, and so on.

Each of the five entity EJBs has a corresponding Access Bean “wrapper”,
generated by VisualAge for Java. When accessing an entity EJB directly from the
client, these access bean wrappers reduce the complexity of remote access
through a simplified client API and improve EJB performance through a number
of techniques.

In general, however, entity EJBs are not directly manipulated by the Trade client,
even when operating in EJB mode. Instead, operations go through the session
bean, TradeBean, through its access bean wrapper, the TradeAccessBean.

An example of end-to-end processing is illustrated in Figure 2-7.

16 Application Development Using the Versata Logic Suite for WebSphere

Joe, in action!

Figure 2-7 End-to-end processing

2.3.3 Use of copy helper access beans

Some business functions, however, bypass the TradeBean. Business functions
that update several items of client data at the same time need a more efficient
way of setting EJB attributes. This is the case, for instance, when a user updates
his personal profile.

Profiles are maintained by the doAccountUpdate() method. To optimize
doAccountUpdate(), the TradeAction class directly calls the ProfileAccessBean.
The ProfileAccessBean is a VisualAge for Java copy helper access bean. This
bean provides optimizations designed specifically for updates. It allows individual
attributes of an object to be updated in the client tier before committing the entire
updated row in a single remote call.

To optimize performance, Trade designers have employed a sophisticated mix of
session EJBs, entity EJBs, plus wrapper and helper classes for their business
logic. This is in addition to the various JSP, servlets, classes, and other
components used for the MVC architecture of the client tier.

2.3.4 Basic business logic in Trade

Compared to the operations of a real life brokerage application, the business
logic in the basic Trade application is minimal. Of course, this is because Trade
was designed for performance testing, and not as a fully operational business
application.

Chapter 2. Trade application overview 17

If we consider that business logic is the data processing that must occur to carry
out organizational functions and policies, we can summarize the main,
transactional business logic in Trade.

For the buy() method, whose signature is “public double buy(String userlD, String
symbol, double quantity)”

» Find the account for the current userlD; do an error check if there is no
account or non-existing account.

» Find the quote price for the stock symbol; do an error check if there is no
symbol or non-existing symbol.

» Multiply the quote price by the quantity.

» Create a holding object with for the specified user with the amount, stock, and
quantity.

» Within the same transaction, debit the user's account balance by the amount
of the transaction. (The debit function will need to be added to the Account
EJB to supplement the default get and set methods.)

For the sell method, the logic is similar but reversed, although more sophisticated
coding may be needed to find the correct holding to sell.

2.4 Potential enhancements to Trade business logic

In the remainder of this redbook we examine how the initial business functionality
in Trade can be automated using the Versata Logic Server. We also consider how
the application can be enhanced to meet real-life requirements such as:

» Allowing users to sell partial holdings. This includes adding a transaction table
to save the buy and sell operations for each holding.

» Controlling “margin selling”. This includes checking balances and margin
rules before sell operations.

» Much more extensive checking and validations in the EJB tier. The current
Trade application implements most data validation and error checking in the
client tier (in the TradeAction class). Placing field length, data type, and other
validations in the business logic will allow it to be shared among multiple
applications.

» Adding a flexible commission system that can maintained by business
managers.

We will also examine the ease of automating this functionality with high level
declarative rules.

18 Application Development Using the Versata Logic Suite for WebSphere

Business logic automation
using rules

The Versata Logic Suite is a business logic automation engine and design studio
that captures business logic rules and executes them as J2EE components
running within WebSphere. It is designed to simplify WebSphere application
development and to make J2EE systems more general, flexible, understandable,
and reusable.

Versata defines the process of creating and executing systems directly from their
high level rule specifications as automation. Automation allows the developer to
specify “what” the logic should do, not “how” it is to be implemented.

Because Versata rules are easier to understand, write, change, and debug than
the hand-coded programs they replace, software systems can be built faster and
with more consistent quality. In addition, the time and quality benefits should
increase over the entire software life cycle, since new requirements can usually
be handled by simple rule changes and additions. These changes are applied
consistently during re-automation by Versata and typically do not introduce new
bugs or errors — the downfall of most software maintenance efforts.

© Copyright IBM Corp. 2002. All rights reserved. 19

3.1 Scenarios for automating WebSphere applications

There are two scenarios for automating WebSphere applications using the
Versata Logic Suite.

In the first scenario, the Versata Logic Suite is used to automate the business
logic of a WebSphere system and is also used to create the Versata-automated
client application. This scenario is examined in Chapter 6, “Designing an HTML
client application” on page 73, which introduces the Versata Presentation Server
(part of the Versata Logic Suite).

In the second scenario, the Versata Logic Suite is used to create the
transactional business logic (EJB tier) of a WebSphere application, while
non-Versata components are integrated to provide the presentation logic (Web
tier). This scenario is examined in Chapter 10, “Integrating Versata Logic Suite
with WebSphere Studio Application Developer” on page 167, where the existing
Trade client, built with WebSphere Studio and VisualAge for Java, is integrated
with Versata's rule based business logic.

An illustration of both scenarios is shown in Figure 3-1.

WebSphere Application Server
o Option for Trade
Existing Trade =
Client AL
(WebSphere Studio, LA

,,,,,,,,,,,,,, Present ation
,,,,,,,,,,,,, Designer)

o= > —

Yersata Logic Server

DB2
EJB Container

Figure 3-1 Two scenarios for automating WebSphere applications

20 Application Development Using the Versata Logic Suite for WebSphere

Note: In either client scenario, VisualAge for Java can have an important role
in a Versata-automated system. For instance to, integrate Versata business
logic to enterprise resources, Versata rules can call Visual Age for Java
components such as Enterprise Access Beans. This ability allows new,
rule-based logic to interact with legacy applications, MQSeries middleware,
and other specialized EJBs. In addition, VisualAge for Java can be used as the
Java debugging environment for the Versata Logic Server. These, and other
potential integration points, are explored in Chapter 10, “Integrating Versata
Logic Suite with WebSphere Studio Application Developer” on page 167 and
Chapter 11, “Developing with UML and rules” on page 193.

3.2 Design and runtime environment

The Versata Logic Suite includes a design environment, the Versata Logic
Studio, and a runtime environment, the Versata Logic Server.

The Versata Logic Studio includes a transaction rules designer to specify
business logic, and an optional presentation designer to specify complete HTML
or Java client applications. The Versata Logic Studio runs as a desktop
application.

The Versata Logic Server includes a transaction rules engine to execute
business logic, and an optional presentation engine to execute client application
logic. The Versata Logic Server installs into an EJB container provided by the
WebSphere application server. A development copy of the Logic Server is
provided with the Versata Logic Studio for testing.

These are illustrated in Figure 3-2.

Design E=ecute

Versata Transaction Versata Transaction

Rules Desizner

Versata Presentation
Designer

Versata Logic Studio

Rules Engine

Versata Presentation
Engine

Versata Logic Server

Figure 3-2 Versata design and execution environments

Chapter 3. Business logic automation using rules 21

As noted previously, the Versata Transaction Rules Designer and Engine can be
used with or without the Versata Presentation Designer and Engine. Both use a
high level development approach.

The remainder of this chapter examines some characteristics of Versata rules
created in the Transaction Rules Designer.

3.3 Transaction rules for automated business logic

In the software industry, the term “rule” has been used to describe several
technologies. Within messaging systems such as IBM MQSeries, rules are used
to direct the routing of messages. For Web personalization, such as that provided
by modules in the WebSphere Application Server, rules are used to control the
presentation of content. Finally, within Artificial Intelligence (Al)-like inference
engines, rules are used to leverage “expert knowledge” to solve a specific
business problem.

For clarity, we will now distinguish Versata Logic Server rules from the other rule
technologies.

Important: Versata Logic Server rules are high level, unordered assertions
about data used to formulate and direct the transactions within a J2EE
application server.

Unlike messaging systems, they do actual logic execution. Unlike personalization
add-ons, they carry out the core business functions of a WebSphere application.
And, unlike inference engines, they are not situated “outside” of the system to
provide inferred conclusions.

3.3.1 Example of a rule

Having said that Versata rules are assertions about data, Example 3-1 is an
assertion:

Example 3-1 Assertion example

For an object Account,

the value of the attribute ActiveHolding

is

the number of Holding objects associated with this Account where the
QuantityOnHand of the Holding is greater than zero.

22 Application Development Using the Versata Logic Suite for WebSphere

Figure 3-2 shows a typical rule definition within the Versata Studio.

'm Business Rules Designer - ACCOUNTBEANTEL |

Albtributes I Belatiunghip;gl Eu:un&traint.gl Actiu:ur_';sl Eru:upertie:sl

Marme |Derivatiu:|n |Va|iu:|atiu:|n

TR_UID Fequired

TR_BALAMCE

TR_CURRTRAMS [Mot persizted] SurmlhazHolding Prevent Uzer Update
ACCOUNT_TYPE If[ACTIWE_HOLDIMGS = &5 AMD | Coded Yalues List{dCCTST
ACTIVE_HOLDIMNGS Mot persisted] CounthasHolding fPrevent User Update
F'EIIHTFEI LIO_walLlE [Mot perzizted] SurfhazHalding Prevent Uzer Update

4 3

Drerivation I Yalidation / D ata Type I F'resentgtian-l Nates-l E:-ctended-l

Derivation Tupe IEaunt LI [~ Persistent

— Dierivation Rule
[rata Object
hasHolding [HOLDIMGEEAMTEL] LI

Qualification Exprezzsion

TR_QATYOMHAMD >0 (= | |

Figure 3-3 The rule specifying the value of ACTIVE_HOLDING

The transactional effect of this assertion is that, when the QuantityOnHand of a
Holding is changed (when buying or selling a stock, for instance), the
ActiveHoldings count in the Account object will be automatically examined. If a

new Holding is added, or if the shares of a Holding drop to zero, it will be adjusted
up or down as needed.

Note: The number of ActiveHoldings will be used as part of a personalized
commission calculation in the rule-enhanced Trade application.

Chapter 3. Business logic automation using rules 23

3.3.2 Characteristics of rules

Here are some important points to notice about the rule:

» [t implements logic for multiple objects. From what we have seen, the rule
affects at least two entities — Account and Holding. In fact, the rule will also
involve a third entity — a new Transaction object. Logic in the third object will
be automatically created because Holding has a rule to derive its
QuantityOnHand from the Transaction entity.

» It is declarative. This means that the designer did not specify how the
system is to get this result. The developer did not need to decide whether the
“count” function resides in the Holding EJB, or the Account EJB or a third,
session EJB. He did not need to implement arrays of Holdings, counters, or
cross-object get and set methods.

» It is transaction independent. There are several transactions that affect the
on-hand quantity of a stock in a holding. A buy transaction will increase the
quantity: A sell transaction will decrease it. In addition, new transactions may
be added in the future (to convert options to stock, for instance.) These all
may affect the on-hand quantity of a stock. The important thing is that the rule
to re-calculate ActiveHoldings will be applied automatically, to any transaction
that requires it. No developer analysis is needed to determine when to apply
the rule.

» It is unordered. Although a specific sequence of operations will be
implemented (Holding will be updated before Account), the developer need
not worry about the ordering of operations. A rules compiler in the Versata
Logic Server will unravel the dependency between objects and sequence
operations correctly.

» It will be automatically optimized for runtime. As we saw in the original
Trade application, performance is frequently a concern when utilizing EJB
remote interfaces and container managed persistence. The Versata Logic
Server provides services within the WebSphere Application Server to
overcome many of these concerns.

For instance, the Versata Logic Server maintains a transaction cache for
cross-entity interactions inside of WebSphere. This means that the appropriate
Transaction, Holding and Account objects will be brought into the Logic Server
cache in a single read from the database. The entire rule chain will execute from
this cache, speeding execution while guaranteeing data integrity.

In addition, all the interactions between Transactions, Holdings, and Accounts will
be done with simple Java method calls, rather than with expensive EJB access.
Current EJB containers (those adhering to the EJB 1.1 specification) impose
significant overhead on EJB calls, even between beans using the same Virtual
Machine.

24 Application Development Using the Versata Logic Suite for WebSphere

This overhead includes RMI call-by-value semantics, permission checks, and
transaction control. To avoid this overhead, the Versata Logic Server implements
business object rules in lightweight Java class “helpers” — one for each entity
EJB. Thus, all Versata rule processing will use simple Java method calls, greatly
improving the performance of rule processing versus hand-coded EJB
transactions.

Note: EJB 2.0 compliant servers are expected to adopt this approach to local
object access.

Chapter 4, “Architecture of the Versata Logic Server within WebSphere” on
page 39, details the runtime architecture of the Versata Logic Server within
WebSphere and explains these performance features in more detail.

3.3.3 Rules and EJB domains

From the example above, we can make these additional observations about
Versata rules.

The first observation is that rules apply to data, specifically they apply to data
when it changes. From this we can see that, in applications where persistent data
does not change, this type of rule will not be very useful.

Note: This characteristic is one of the main differences between “inference
rule engines” and “transactional rule engines”. Inference engines collect their
data and make decisions independent of transactions. The result of the
decision may or may not be used in a transaction. With most inference
engines, the transaction will be designed and coded by the developer using
traditional coding methods.

Transactional rules engines, on the other hand, drive transaction logic.
Automated transactions proceed (or don't proceed) because of rules. These
automated transactions may be customized with hand-coded logic, but the
bulk of the calculations, validations and evaluations come directly from the
executing rule.

The second thing we observe about Versata logic rules is that they govern the
interactions of a set of business objects (and their attributes) in a J2EE
application. Here we will coin a new phrase - this set can be thought of as a
domain of EJBs, where the domain is a collection of entity-type EJBs that will be
needed to carry out a series of common business functions.

Chapter 3. Business logic automation using rules 25

The specification of this domain usually begins with an object model (or a
database schema.). In fact, the Versata Logic Suite, has utilities to import both
object models (from Rational Rose, for instance) and schemas (from relational
databases). These jump-start the definition of the domain. The remainder of the
domain specification is done through rules.

Note: For those familiar with software engineering domain analysis, a
repository of Versata business objects and rules capture both the
commonalities and variabilities of a set of applications to be deployed in the
enterprise.

The complete specification for all of the domain objects and their interactions is
stored as “metadata”. This metadata is kept in an XML-formatted repository and
is available, at design time, to the Versata Logic Server and other applications
accessing objects in the domain.

What remains then is to classify the types of rules that can control the behavior of
a domain of EJBs.

3.3.4 Classification of declarative logic (rules)

26

In the business rules community, there has been considerable analysis of the
types of rules needed to specify the logic of business functions. As early as 1995,
the GUIDE Business Rule Project established a vocabulary and taxonomy
(classification) of rules on which Versata’s definitions are largely based.

Tip: A paper describing this is available at:

http://www.businessrulesgroup.org/first _paper/

Note: Because the Project did not tie their vocabulary to a specific technology,
we have narrowed their definitions to make them more relevant to Java
developers. For instance, a business “term” is narrowed to mean a Java class,
entity, or business object (all synonymous) and its fields or attributes (also
synonymous).

Application Development Using the Versata Logic Suite for WebSphere

http://www.businessrulesgroup.org/first_paper/

Figure 3-4 illustrates the various rule types based on the GUIDE Business Rule
Project.

Relationship
Derivation
Rule Types Inference
Constraint
Action

Figure 3-4 Based on GUIDE Business Rule Project

The rule types based on the GUIDE Business Rule Project are as follows:

» Relationship rules specify the association between entities. Rather than
controlling transaction behavior itself, they enable other rules to be designed
and enforced.

» Derivation rules are algorithms that derive attributes from other attributes. In
Versata, derived attributes can be persisted or non-persisted (in which case
they represent runtime only values).

» Inference rules use one or more truths to arrive at a new truth. The new truth
usually derives an attribute.

» Constraint rules specify the policies of a business. They govern under what
conditions operations can proceed.

» Action rules initiate another business event, message, or activity based on
some condition.

In the following sections we provide some examples from the Trade application.

Relationship example

Relationships typically imply a parent-child association between entities.
Through the use of intermediate entities, they can also be used for more complex
relationships. An example of a parent-child association in the Trade application is
a rule that says, “An account has holdings”.

As we will see, the Versata Logic Server automates can almost all operations
between related entities. For instance, an Account can automatically count and
“sum” all of its Holdings. Holdings can automatically check for sufficient funds in
the related Account.

Chapter 3. Business logic automation using rules 27

28

Furthermore, as they are entered, Holdings can automatically check to ensure
they are associated with valid Accounts. These are only some object behaviors
enabled by relationships

Derivation example

Derivations are computational, which means that the value of that attribute is
arrive at by a formula. An example is a rule that says, for a Holding:

“QuantityOnHand = QuantityPurchased - QuantitySold”.

In addition, computational derivations can specify sophisticated qualifications
and can navigate to other objects to use their values in computations. An
example of this is a rule that says, for a sales Transaction:

“The Price used to calculate the Amount of the Transaction is the Price
(from the Quote Object) of the associated Stock (specified in the Holding Object)”

From the Versata Logic Studio, the rule is shown in Figure 3-5.

#_Business Rules Designer - TRANSBEANTBL [=]

Altributes | Eelationship;sl Qonstraint§| Actior_ﬁl Eropertiésl

Mame Derivation ' alidation -~
FIF[TR_TRANSTYPE = 2/ Sell®] §

TR_OUANTITY TR_OUANTITY >0

TR_INDEX

TR_AMOUMT TR_GROSS4MT + TR_COMMISSION Prevent User Update

TR_TRAMSTYPI Default; 2 Coded Values Lis TRANSTYPES)
TR_TR&NSID Prevent Uzer Update -
< D

Drerivation I Walidation / Data Type I F'lesentgtion.l Notes.l Extended.l

Drerivation Type IFD'mUIa Vl ¥ Persistent

— Formula Expression

IF[TR_TRAMSTYPE = 2/~ Sell*/]| Then =
$walue = getBelongs T aHalding(). gatU ses0uate]). getTR_PRICE()
EndIf

-

Figure 3-5 Rule example

Application Development Using the Versata Logic Suite for WebSphere

Inference example

Inference rules can be thought of as a specialized type of derivation, where an
attribute is derived from a truth. An example is a rule that says, for an Account:

“If Balance is greater than $500K, then the AccountType is 'wholesale'.

Like computational derivation, inference derivations can chain together
evaluations and calculations from several entities. It is possible, for instance, for a
rule to say that, for an Account:

“An AccountType is ‘wholesale’ if the Account Balance is greater than $100K
[Account entity], AND the number of ActiveHoldings is greater than 20
[Holding entity], AND the average TransactionSize is > $10K [Transaction Entity].

Constraint example

Constraints define legal states in the system. For transactional systems they
define legal values of data that are allowed to exist. A rule to restrict (constraint)
margin selling in the Trade application is one such state. It says, on Account,
“Balance can't be less than zero”.

This simple-sounding constraint rule will automatically included in any rule chain
that can potentially affect the Account Balance. For instance, here's a “Buy” rule
chain, seen in more detail in Chapter 9, which will be constrained by the margin
rule above.

When buying a stock, the following happens:

1. First, the Logic Server begins to create a new Holding for this Symbol, Date
and Quantity.

It next finds the stock's price from the associated Quote.

It then begins to insert an initial “Buy” Transaction object.

Next, it calculates the cost of the stock [multiply Price times Quantity].

Then it finds the Commission [by checking the Account entity to see whether
the AccountType is a wholesale or retail account, checking the current
CommissionRate for that Account Type and multiplying the CommissionRate
times the TransactionAmount].

Then it calculates the total Transaction Amount.

Next, it begins to Update the Transaction Count for this Holding.

Then it begins to debit the Account Balance with the Transaction Amount.
9. Finally, it encounters the constraint.

10.If the constraint is violated (if the new Balance will be less than zero).

11.It unwinds the entire operation [rolls back changes to the Holding,
Transaction, and Account objects.

ok~ wpd

© N o

Chapter 3. Business logic automation using rules 29

This example reinforces three important characteristics about rules.

First, notice that we did not have to write a “Buy” method to perform this chain of
events. A simple change [insertion] to a Holding object began the process. The
Logic Server understood all of the objects involved. It understood all of the rules
and all of the cross-logic between the object attributes. It understood all of the
dependencies, including which was the “inner-most” and “outer-most” object. It
understood how to optimize the chain of events, including caching the Account,
Holding, Transaction and Quote objects during the transaction because their
attributes were needed several times. Finally, it understood where to put
transaction boundaries and how to deploy the transaction into the WebSphere
application server.

Second, notice that the rule is not tied to any particular transaction. Instead, it
applies to the “state” of the system. The rule would apply also if the user tried to
withdraw money from his account - his would be prevented from withdrawing
more funds than he had. The Logic Server is responsible for maintaining the
declared state and the Logic Server is responsible for identifying all the possible
transactions that affect that state.

Third, notice that the declaration of rules was completely unordered. We actually
created this rule to constrain margin selling before we even knew how the
Balance would be derived. Similarly, declared how Commission was derived
before worrying about how the stock price was going to be found.

This is “what” not “how” — terms often used when categorizing declarative logic
rules.

Another type of constraint rules — a transition constraint — is possible:

» Transition constraints define legal transitions, or changes from one state to
another. An example is a rule that says:

“Old QuantitySold cannot be more than New QuantitySold”
(In other words, in the Trade application, it is not possible to “un-sell” a stock)

During rules processing, the Logic Server maintains old and new values of all
attributes. This allows rules to easily check and constrain transitions between
object states.

Action example

The final type of rule consists of action rules, more completely referred to as an
Event/Condition/Action. The Event is the operation and entity being watched by
the Logic Server. The Condition must be met in order to proceed. The Action is
the side-effect that should result from a condition being met.

30 Application Development Using the Versata Logic Suite for WebSphere

An example of this is a rule that says:

“When adding a new Transaction, if the TransactionType is “sell”, credit the
related Holding's related Account Balance”.

The Logic Server will take an action when all other rules leading up this
event/condition have evaluated as “true”.

3.4 Business uses of rules

It is also helpful to classify the business use of rules. Although there are many
more, here are six business uses of transactional rules:

1. Rules can automate data validation. Data and transactions are more accurate.
Validation coding is eliminated.

2. Rules can preserve the association between related objects when they
change. System consistency is assured. Coding to check and maintain
relationships is eliminated.

3. Rules can automatically synchronize related attributes in different objects.
Complex transactions are always implemented correctly. Performance is
optimized.

4. Rules can enforce operational policies and respond to change when policies
change. Logic is defined in well-understood declarations. Policies are enforced
uniformly.

5. Rules can identify interesting data. Flagged data can be used for
personalization or cross-marketing.

6. Rules can initiate asynchronous events. Events integrate the rule-based
system with external applications. Events can also initiate exception processing.

In the following topics we supply details and examples of the EJB hand-coding
that is replaced by rules:

1. Rules can automate data validation. Data and transactions are more
accurate. Validation coding is eliminated.

A fundamental use of rules in the Versata Logic Server is for data validation.
Validation rules are a type of constraint.

Chapter 3. Business logic automation using rules 31

Although validation is frequently overlooked when estimating the amount of
business logic in an application, its design and development consumes costly
programming resources. Moreover, validation (and related error handling) code is
usually sprinkled throughout various client-tier and logic-tier components. This
makes logic difficult to re-use and maintain.

The Trade application, for example, checks user input first in the
TradeAppServlet, validates the parameters in the TradeAction class, and finally
confirms them in the Trade session EJB. If the Trade application were to do more
extensive validations, or if the data types in the entity EJBs were to change,
many components would require maintenance.

Versata rules allow data validations to be attached to objects directly, as part of
their metadata. This is illustrated in Figure 3-6, where the Account Type
(wholesale, retail or new) is validated from a list of values. (To optimize
performance, Versata Logic services can cache this list in the Web-tier of the
application server and share it among users.)

Business Rules Designer - ACCOUNTBEANTBL

Attibutes | Eelalionship;sl Qonstraint-sl Actioﬁsl Eropertiésl

I arne D erivation [alidation

TR_JID Required
TR_BALAMCE

TR_CURRTRANS [Mot persizted) Sum(hasHolding Prevent User Update

ACCOUNT TYPE IF[ACTIVE_HOLDINGS » 5 Coded Values

ACTIWVE_HOLDINGS [Mot persisted] Count{hasHolding Prevent User Update
PORTFOLIO_WaLLJE [Mot persisted] Sum[hasHolding Prevent User Update
]] »

Qerivation- ‘alidation / Data Type] Presenlglion-l Notes.l Extended.l

Validation Type — Coded Values List
= Condition IAEETSTYPES J
Stared Yalue| Display Yalue
' Coded Values List » 1 |Existing Retail
2| Euisting ‘Wholesale
3| Mew Account
*
Data Typelm ™ Walue Required
Sub Typel Lotg Integer 'l W Prevent User Updates

Figure 3-6 \Validation from a cached list of values

32 Application Development Using the Versata Logic Suite for WebSphere

These are some other validations for the Account_Type attribute shown here:
» The User must enter a value.

» The value will be translated, using the validation list, to a Java long integer
(this is stored in the database).

Using rules to specify attribute validations with rules has several benefits. First,
validations, like all rules, will be applied consistently across all applications. This
increases system integrity.

In addition, validation metadata, like other rule-based metadata, can be
accessed through object methods. This makes it possible for a client components
to derive their behavior from business entity metadata. This extends the use of
the “Model” in the Model-View-Controller architecture and could allow client
components to adapt automatically to changes in business logic.

2. Rules can preserve the association between related objects when they
change. System consistency is assured. Coding to check and maintain
relationships is eliminated.

Referential integrity refers to the need to maintain consistency between one
business object and all of the other objects that refer to it. For example, in the
Trade application, where there is a relationship between an Account and its
Holdings, it would not be good business policy to allow an Account to be deleted
if it had active Holdings. Similarly, the business undoubtedly has a policy
ensuring that Holdings are created only if the user has a valid Account.

In applications where all data is kept in the same relational database, enforcing
referential integrity can be left to the database management system. If, however,
there is the potential for data to come from more than one source, integrity must
be assured through application code. In J2EE applications, the place for this
code is in EJBs (Whether it should be placed in the parent entity EJB; or the child
entity EJB; or in a third, session EBJ — is a question frequently debated.)

Versata business logic rules provide an easy and consistent way to enforce
relationships and integrity, even between objects in different databases or legacy
applications.

Figure 3-7 shows a Trade referential integrity rule specified in the Versata Studio.
Here, the Account entity has two relationships defined: one to the Holding entity
and one to the Profile entity. Versata rules specify how the relationship between
Account and Holding should be formed (by userID) and specifies the types of
referential integrity that will be enforced.

Chapter 3. Business logic automation using rules 33

Business Rules Designer - ACCOUNTBEANTBL

Altributes Belationships | Qonstlaintsl Actioﬂsl Eropertiésl

Go to Related |

= Relationshipz to Child D ata Objects
+ hasHolding [HOLDINGEBEANTEL]

1+ AccountPrafile [PROFILEBEEANTEL]
Relationzhips to Parent Data Objects

Referential Integrity Presentatio.nl Extendsd

¥ Enforce Referential Intedrity
—On Parent Update———— -~ Ok Parent Delete——————— — On Child Inzert/U pdate

& Prevant If Children

' Prevent If Children + Prevent If Mo Parent

= Delete Children

" Update Children " Inzert Parent |f None
= Mull Children Foreign ey

r— Error Messages While Preventing

Update Parent IEan't update User |D. Refers to existing Holdings.

Delete Parent |Can't delete Account, Has existing Holdings

Insert/Update: Eh“dl Can't insert thiz Holding. Mo valid Account

Child Rale Mame IhasHoIding Parent Rale Mame IBangSTQe‘CCgunt

Figure 3-7 Account relationships and referential integrity

Versata rules can enforce very sophisticated integrity. For instance, to perform
automatic clean-up, a rule could be defined that, when deleting an Account, the
user's Profile should be deleted as well.

Enforcing referential integrity in EJBs greatly increases integrity of data entered.
Automating this behavior with rules improves the functionality of systems without
tedious hand-coding.

3. Rules can automatically synchronize related attributes in different
objects. Complex transactions are always implemented correctly.
Performance is optimized.

One of the most common patterns coded into EJB logic is getting and setting the
attributes in related objects within the scope of transactions. The IBM-version of
the Trade application “Buy” function is a simple example. Given a UserlD, stock

Symbol and Quantity, the Buy operation:

34 Application Development Using the Versata Logic Suite for WebSphere

» Finds the related stock from the Quote entity (the developer first defines a find
method to do this)

» Checks that the Quote is valid and gets its price

» Finds the related account for that UserID (the developer first defines a find
method to do this)

» Checks that the account is valid and gets its balance
» Creates a holding and checks to see that this succeeds

» Debits the account balance (the developer first defines a debit method to do
this)

(The Trade code notes that the logic to check that there are sufficient funds to
buy the holding has not been implemented.)

As we see in Chapter 6, “Designing an HTML client application” on page 73,
rules can be used to automate this transaction. The relationship rule between the
Holding and Quote entity allow us to automatically get the price of a stock. The
relationship between the Holding and Account allow us to automatically get and
update the Account balance. And as we saw earlier, logic to check for sufficient
funds can also be implemented with a simple constraint.

One of the most effective uses of Versata Logic Server rules is to automatically
implement complex, cross-entity transaction logic. Rules assure that the logic is
implemented correctly, and that it can be enhance with simple rule modifications.

4. Rules can enforce operational policies and respond to change when
policies change. Logic is defined in well-understood declarations. Policies
are enforced uniformly.

Often, organizations begin to look at rule-based systems when they need comply
with government or industry regulations, especially when those regulations
change. Constraint rules are useful for this purpose.

In the rule-based implementation of the Trade application, we will add a rule to
control margin accounts. For each user, a margin limit will be calculated based
on the current SEC regulation for that account type. Buy operations will be
permitted or rejected by consulting the current SEC cut-off.

5. Rules can identify interesting data. Flagged data can be used for
personalization or cross-marketing.

Although transactional rules are not primarily used for personalization or data
mining, such rules do “watch” transactions as they flow through the J2EE
application server.

Chapter 3. Business logic automation using rules 35

For example, with a rule on the Account entity, a sales representative can be
automatically notified when a new user, with an account balance greater than
$100K, is added to his territory. Or a user may set a flag on his holdings, to notify
him when a stock drops more than 25%

Since rules watch for changing data, any behavior initiated by a change in state
can be a candidate for a rule.

6. Rules can initiate asynchronous events. Events integrate the rule-based
system with external applications. Events initiate exception processing.

Although Trade is an entirely synchronous application (transactions are
committed or rolled back immediately), most enterprise systems have some
asynchronous operations.

For example, when a user updates his account information, a rule could create
an XML formatted message and place it on a message queue to be picked up by
the corporate CRM system. Or the system could start a workflow process, and
advise an investment representative to contact this customer who had just
deposited $100K in his account.

Rules watch data changes and can initiate synchronous transactions or
asynchronous events based on those changes.

3.5 What the Versata Logic Suite is not

We conclude this chapter with a discussion of what transactional rules are not.
This may help to clarify when and when not to use transactional rules for
WebSphere applications.

As we discussed, the Versata Logic Server is not an inference rules engine.
Typically, inference (or decision support) engines sit outside of the transactional
system. They may be used to build expert systems or produce input to
transactional components, but they do not directly implement the transactions
contained in components such as EJBs.

The Versata Logic Studio is also not a Case tool. Case tools produce models and
code “stubs” which are them implemented and integrated. Versata rules are
executable and they need no further development (although they can be
customized, as we see in Chapter 9, “Integrating the IBM Trade2 client” on

page 151.)

36 Application Development Using the Versata Logic Suite for WebSphere

The Versata Logic Suite is not a “4GL”. Fourth-generation languages shortcut
procedural programming, but they are not declarative. A 4GL function will
generally map, one-to-one, to a coded procedure. These functions do not unravel
dependencies, sequence complex chains of operations, and map to logic across
many entities.

Finally, although the Versata Logic Suite does construct Java components, it is
much more than a code generator. It uses high level specifications to create and
directly execute applications. In each case, a specification (the “what”) is input to
the Versata Design Studio and is stored as exchangeable XML. From the
specification, the system automatically parses, analyzes and creates the desired
applications utilizing highly performing enterprise Java frameworks (the “how”.)

As we see during the next chapters, which detail the rules-enhanced Trade
application, the Versata approach is particularly well-suited to WebSphere
applications with substantial business logic, where application requirements are
evolving or where project time, costs or EJB development skills may be an issue.

Chapter 3. Business logic automation using rules 37

38 Application Development Using the Versata Logic Suite for WebSphere

Architecture of the Versata
Logic Server within
WebSphere

In Chapter 2, “Trade application overview” on page 9 and Chapter 3, “Business
logic automation using rules” on page 19, we explained that the Versata Logic
Server installs into the WebSphere Application Server to provide runtime
services for rule-enabled business logic.

In this chapter we answer common questions about the Logic Server
Architecture within WebSphere, its utilization of WebSphere services, and the
exact nature of the business objects it creates and executes.

Note: At the time of this writing the Versata Logic Server was generally
available on WebSphere version 3.5. A port was underway to WebSphere
version 4.0. Terminology may differ slightly for WebSphere version 4.0.

© Copyright IBM Corp. 2002. All rights reserved. 39

4.1 What the Versata Logic Server is, and how it works

The most frequently asked question about the Versata Logic Server is simply,
“What is it really?” In terms of J2EE components, this means “What is it
comprised of, and how does it work?”

The Versata Logic Server is a loose term for a small set of sophisticated EJBs
that run inside of the WebSphere Application Server. The EJBs provide libraries
of Java classes (services) used by the business objects and applications created
in the Versata Studio.

The two primary EJBs are the VLSContext, used by the Versata Transaction
Rules Engine, and the PLSContext, used by the Versata Presentation Engine.
When the Logic Server is installed, these stateful session EJBs are deployed
automatically into a WebSphere EJB container. This is illustrated in Figure 4-1.

Servlet Engine

Versata

Client Lihraries

Business L ogic Presentation Logic
Services Services

Versata

Administrative
Console

EJB Container

Figure 4-1 Versata Logic Server components created by installation

To assist in managing the collection of Versata resources, an instance of the
WebSphere Application Server, called VERSATA, is created to house the EJB
container. A servlet engine is also configured to execute Versata application
servlets.

40 Application Development Using the Versata Logic Suite for WebSphere

When a user connects to the Logic Server, a VLSContext instance is created and
is available for the duration of the session. When a user executes a Versata
constructed application, a PLSContext instance is also created.

¥ WebSphere Advanced Administrative Conzole
Console Yiew Help

T

@ rnedae [AE

-3 AdrinApplication
=) jackiel 31

=45 WehSphere Administratie Doz +| iApplication Server:VERSATA
General | Asvanced | Debug|

G/24/01 12:13 PM : Command "VER3ATA.start” running ...
G/24/01 12:15 PM : Command "VERSATA.start” completed successfully.

&} JDBC Driver Application Server Narme: WERSATA =
[-FR Default Server _
[_~| Current State: Running
EQ WLS Desired State: Running
e WLSContext — L
_____ PLEContest Start Tirme: Aug 24,2001 12:414:03 PM
- % AdminContext Executable in use: E:febSpheretdppSerenjdiijreibinjava
By radl;emmeSRF' Cormrmand line argurnents IJBNLSCUmpunentsIC\assesItradejar;
E% frade Enviranment | Enviranrment...
----- Account
% Hulding Process ID: 5249 |
""" % Profils Working directary: [EWersatas.1_EJENLGHRIN
o Quote =
- Regisiy [Standard input: |
- VLSS enats o
-} Remate Servlet Redirecta Standard inputin use: 5
[+ Trade 2 Server ~
. Mafaol NataCaoeea
q | _,|J Apply Resat |
Console Messages
Hfaq/UL Latld PN LONmANG UIPC.YECUrS1Ve remove” COMplerced SUCCeSZLULLY. d

Figure 4-2 Versata Logic Server EJBs and servlet engine in WebSphere

4.2 Managing the Versata Logic Server in WebSphere

It is important to note that the Versata Logic Server has been designed to take
advantage of the management and scalability strengths of the WebSphere

Application Server. Here are some of the management characteristics of the
Logic Server running within WebSphere:

» It is implemented with workload managed session EJBs. This allows multiple
Versata Logic Servers to be replicated (cloned) and allows WebSphere to
transparently distribute user load between Logic Servers, increasing

throughput. Cloned copies of the Logic Server can be placed on the same

physical system (vertical scaling), or on multiple distributed systems
(horizontal scaling).

Chapter 4. Architecture of the Versata Logic Server within WebSphere

41

» It can use WebSphere security mechanisms. As we see in the next chapters,
the Versata Logic Server controls access to its business objects using
role-based authorization. Versata can use any WebSphere authentication
mechanism to obtain validated user and role information. In this way, an
organization can maintain a single directory of user data. Similarly, the
Versata Logic Server can use sign-on information, passed from other
applications, to grant access to business objects. This facilitates single user
sign-on.

» It can be configured to provide redundancy. When configured with workload
management software and WebSphere servlet redirection, service requests
to a failed system can be directed to a Logic Server clone on a backup
system. When the WebSphere administrative database and Versata role
information is also replicated, this configuration eliminates a single point of
failure.

» It can be configured to run behind a firewall. With WebSphere servlet
redirection, the Versata Logic Server can be placed behind a firewall, as
shown in Figure 4-3.

Braducibn Dababase

—

Profuaise §ymas

[FOTATT IEMATEF fuzn s
ERLWAT

EN TR 1

Whd s AT ferar

Elic Ty o Fr=iwtian

Figure 4-3 Firewall and hot backup configuration

42 Application Development Using the Versata Logic Suite for WebSphere

4.3 Versata business objects

Before beginning development, it is also useful to understand the construction of
the business objects managed by the Versata Logic Server. As we explained in
Chapter 3, “Business logic automation using rules” on page 19, rules attach to
data. Specifically, rules attach to business objects and their attributes.

Business objects in Versata are application-independent components that
represent data and encapsulate the logic, or rules, need to carry out business
processes. There are two types of business objects used in Versata:

» Data objects map to entities physically persisted to disk. A data object
contains the set of attributes (both persistent and derived virtual attributes) to
which rules are attached. Within WebSphere, data objects are deployed as
entity EJBs as illustrated in Figure 4-4.

File Edit “ersatalogic Server Zpplication Buld Managers Tools Windows Help

alelE] mEslE &l 2 e] Bl &% &l alelm

&3 Repository Objects ¥ Business Rules Designer - ACCOUNTBEANTBL I
E-23 Business Objects T __—______—e
454 Data Objects Attributes | Eelatinnshipsl ansllaintsl A:linﬂsl Ernpemesl
1@y ACCOUNTBEANTEL

lan| TR_UID
lab]] TR_BALANCE N ame Derivation W/ alidation
lab| TR_CURRTRANS
[aa] ACCOUNT_TYPE TR_BALANCE

ACTIVE_HOLDINGS TR_CURRTRAM [Mat persisted) Sum(hasHolding Present User Update

“-Jag] PORTFOLIO_WaLUE ACCOUNT_TYPI IF [ACTIVE_HOLDINGS » 5 AND [Coded ¥alues ListACCTSTYPES).
2] 'n ACCTSTYPES ACTIVE_HOLDIM [Mot persisted) Count[hasHolding Prevent User Update
514y HOLDINGBEANTBL PORTFOLIO_YA Not persisted) SumihasHalding Frevent User Update
-y PROFILEBEANTEL 4 *
[+ QUOTEBEANTEL
-y TRANSBEANTEL Derivation I Walidation / Data Type | Presanlgliunl Nules.l Exlandadl

[y TRANSTYPES
[]-% Query Objects

e % Client &pplications Derivation Type Mone 'l ¥ | Fersistert
[]--% Repositom Archetypes
% System Archetypes
7??% HTML Archetypes
::% Java Archetypes

Figure 4-4 Data objects (left) and account attributes and rules (right)

» Query objects represent “views” of joined or restricted data objects. A query
object provides an abstracted, reusable view of one or more data objects that
protect client components from changes to the underlying data objects.
Query objects can also have “virtual” attributes calculated at runtime. Within
WebSphere, query objects are deployed as session EJBs and implements the
J2EE pattern of aggregate or compound entities as shown in Figure 4-5.

Chapter 4. Architecture of the Versata Logic Server within WebSphere 43

"= Query Object Designer - TransactionProfits

DataObjects Attributes I Jains | ‘Where/Order By I Having/Group Byl §E!L| Eropartlesl

Quen Attibutes
Altribute Name | Fully Qualified Name ;l
dizplayalue TRAMSTYPES. displayvalue
TR_QUANTITY TRANSBEANTEL TR_QUANTITY
TR_INDEX TRANSBEANTELTR_INDEX ﬂ
Transaction Price TRAMSBEAMTEL TR_PRICE
Profit_Loss [TRANSBEAMTBL.TR_PRICE * TRANSBEANTEL TR_QUAN ﬂ
TR_UID HOLDINGBEANTEL.TR_UID
-
4] | »
Alias Derivation Type Aggregation Type
|P|ofit_Loss Formula j I [Mane] j
i~ Computed Attibute Detaik
Expreszion
[TRANSBEANTEL.TR_PRICE * TRANSBEANTEL. TR_QUANTITY] - ;I _I
[HOLDINGBEANTBL.TR_PRICE * TRANSBEANTEL TR_QUANTITY)
Data Type INuthr Vl
IDoubIe 'l
Description =
=

Figure 4-5 Query object in Trade shows Profit_Loss attribute

4.4 Versata Logic Server classes

The Versata Logic Server class libraries provides both the construction
framework and the runtime environment for business objects. Each business
object will be created from a subclass of either a Versata DataObject or
QueryObject Java class. In addition to normal EJB methods — create(),
findByPrimaryKey() and so on — these objects will inherit extensive methods to:

Execute ad-hoc queries

Communicate with related objects

Listen for and process rule events

Manage the transaction cache

Form transactions

Communicate with the Versata Logic Server persistence layer

vVvyYvyvyYYyy

The mechanism for business object transactions and persistence is particularly
interesting, as we now explain.

44 Application Development Using the Versata Logic Suite for WebSphere

4.4.1 Persistence as a layer in the server MVC

The Versata Logic Server has a layered architecture that can be thought of

as its own, server-side “Model-View-Controller” as illustrated in Figure 4-6. The
purpose of the Logic Server's MVC is to abstract business logic (the Controller)
from the physical source of data (the Model), and to produce optimized “packets”
of serialized data for display by the client-tier (View). This combination provides
performance, extensibility, and portability.

Versata Client Libraries

Other Data Sources

=
L

. Yersaa Transaction
Sphere EJB Cont
WehSphere omiainer Logic Engine
Connection PooEng
Jiava Transaction Services
supported RDBEMSE)

Figure 4-6 The MVC architecture of the Versata Logic Server

The Logic Server's controller layer consists of the rule-enabled objects, the View
layer consists of the Versata Client APIls, and the Model layer consists of Versata
Connectors. The capabilities of Versata's Client APls and Connectors are
explained later in this chapter. The capabilities of rule-enabled objects are
covered in the following section.

Chapter 4. Architecture of the Versata Logic Server within WebSphere 45

4.4.2 Rule-enabled objects as WebSphere components

Up to this point, you might have noticed that we use the terms object, entity, and
EJB almost interchangeably when referring to business objects. Here is a
clarification on the types of WebSphere components used for rules-based
business objects.

As we mentioned, Versata business objects are sub-classed from Java classes.
One Java class is created for each object and contains its complete rule-defined
behavior. These objects are under the management of the VLSContext EJB (the
business logic service EJB in the Versata Logic Server.)

When the set of business objects is deployed from the Versata Studio, the entire
set of Java classes is deployed (as a JAR) file, and will be added to the
CLASSPATH of the VLSContext bean. During rule-execution, the Versata Logic
Server uses fast, local calls to these class objects as shown in Figure 4-7.

In addition to being implemented as Java classes, business objects can also be
deployed with EJB “faces”. Like a common J2EE blueprint from JavaSoft, Versata
business object classes and their EJB faces implement an Entity Bean —
Dependent Object pattern. Developers can automatically deploy these EJBs for
any object whose methods may need to be referenced from an external
component (such as a non-Versata EJB.)

Note: Object data can be accessed by external components through the client
libraries, even if they are not deployed as EJBs.

The choice to create an EJB for an object is made on an object “property sheet”
in the Versata Studio. For these objects, Versata constructs both the Home
methods to obtain the objects (read from disk, instantiate, and return remote
handle) and update them.

It is interesting to note that there is no rule or persistence performance penalty
for simply deploying objects as EJBs, since the Logic Server will always execute
the local implementation of the method, regardless of how it is invoked. There is
however, the typical look-up and EJB-instantiation overhead if objects are
accessed by their remote interfaces. For this reason, many Versata developers
prefer to use the client libraries.

46 Application Development Using the Versata Logic Suite for WebSphere

WebhSphere Application Server

Versata Client
Libraries

+ Business Ohject Classes

-y

Other E.JB's Business Ohject EJB “faces™

or Access Objects
EJB Container

Figure 4-7 Business object deployed as local classes with EJB faces

4.4.3 ResultSet access and just-in-time object instantiation

As we diagramed in the MVC discussion, Versata provides another method to
access the business objects under its control — the Versata Client Libraries.

The Versata Client Libraries provide fast, ResultSet-based access to “rows” and
“sets” of data objects. As with local rules processing, this avoids the overhead of
remote object references. In addition, the Logic Server minimizes the use of
shared server resources (memory) providing for “Just-in-time” instantiation of the
objects.

Chapter 4. Architecture of the Versata Logic Server within WebSphere 47

ResultSets of objects

Versata client libraries access the Versata Logic Server much like JDBC libraries
access a database. A client establishes a “session” with the Logic Server,
“connects” to a collection of business objects and issues “query” commands on
either a Data Object or a Query Object. Commands can be used to retrieve,
update, insert and save object changes.

Unlike JBDC, however, the commands and queries supported by the Versata
libraries are independent of any database or physical storage. Instead, the
libraries communicate to the Logic Server, who manages details of database or
legacy data access through the “Connector tier” (explained below.)

There are several performance features built into Versata ResultSets. First,
serialized values, instead of objects or handles, are returned to the client. Like
the J2EE “ValueObject” pattern, this allows the client to access multiple attributes
with a single call, copy the attributes to a local object, and operate on it without
remote reference.

Unlike ValueObjects, however, ResultSets can return groups of serialized
objects, further reducing overhead. This is similar to the “ValueObjectList’
pattern, where the Logic Server acts as a general purpose
“ValueObjectAssembler” for all of the business objects in the system. In addition,
Versata ResultSets are updatable, extending the benefit of ValueObjects to all
data accessed by the client.

To support this functionality, the Versata client library provides an optimized
execution framework. The framework retrieves ResultSets into scrollable buffers.
The size of the buffer is tunable (10 rows or 50 row buffers, for instance.) Clients
can loop through ResultSets using first, last, next and previous methods. In
addition, clients can insert rows and modify values in the ResultSet. When
ResultSet modifications are complete, the set can be “saved” to send it to the
Logic Server for processing. (A tunable optimistic locking mechanism preserves
data source concurrency.) An illustration is shown in Figure 4-8.

ResultSet access to EJB-tier business objects is designed to provide the
efficiency of JDBC with the logic encapsulation and reuse of EJBs.

48 Application Development Using the Versata Logic Suite for WebSphere

e P Py s f e i e

ResullSet Access:

«Efficien] serialimed arrays
« Justindime olrjects
» Budfensd ani mcremenial redrieval

*Queryabie
Wersata Chiend = Imseriatde
Lihraries = Uptateahle
1 » Buffensd wiiles
| = Cached loak-up fales

EJE Container

Figure 4-8 Value-based access through Versata client libraries

Just-in-time objects

To conserve system resources, the Versata Logic Server does not create server
objects for ResultSets. Instead, ResultSets are retrieved as serialized arrays
directly through the Versata Connector.

Business objects in the Logic Server are instantiated at the just-in-time moment
that the client completes its changes and issues a “save” method. At that time the
Logic Server instantiates objects for all data that will be affected by the change.
This technique is similar to the Java Pattern for “lazy object instantiation”,
although the Logic Server framework for execution is more extensive.

As explained in our discussion of rules, all of the objects changed by the client or
changed by a chain of rules triggered by the client operation are brought into a
transaction cache to reduce database i/o. Rules ripple through the cache,
evaluating and updating data as needed. A single object may be updated several
times in the cache. When all rule operations have completed, the objects are
written back through the Versata Connector to the data source.

Chapter 4. Architecture of the Versata Logic Server within WebSphere 49

Like sophisticated DBMS, the Logic Server supports implicit single-update
transactions or Begin/Commit verbs to bundle several changes into a larger
transaction. Even in the case of a single changed row there may be multiple
object updates initiated by rules. One of the most productive features of the Logic
Server is that such updates are automatically bound into the transaction, thus
eliminating transaction bugs.

Connector layer

As mentioned above, Client ResultSets are retrieved directly through the
Connector Layer and transactions were written through Connectors. Here is an
explanation of the Logic Server persistence mechanism that uses this layer.

One of the design goals of the Logic Server is to decouple rule-constructed
transactions from any concern for the data's physical persistence mechanism.
Since rules operate on data from relational databases (which may be supported
by EJB Container Managed Persistence) and non-relational data sources (which
are not currently supported by CMP), persistence must be managed directly by
the Logic Server.

Recall that the Logic Server framework is implemented as an EJB, and that
business objects, as Java classes, are managed by this EJB. The Logic Server
manages the persistence of these Java classes through the VLSContext bean. It
does this by calling the Connector mapped to the business object in the Versata
Console. (The Console is an administration interface for a running Logic Server.)

The connector implements object persistence for each class of objects, such as
objects persisted to DB2, or to Oracle, or through MQSeries. Where possible, the
connector uses the transaction and connection pooling services provided by the
EJB container (using the Java Transaction Services API, JTS, from WebSphere,
for instance). For data sources not supported by the EJB container, the
connector implements its own, similar functionality.

Similarly, where WebSphere supports two-phase-commit protocol (2PC), the
connector will also support 2PC. This is done using the JTA ability to assure that
a single call is made for starting transactions (rather than using a separate call for
each connection, which would introduce the opportunity for errors). This API
requires that the EJB code “register” each connection on behalf of the user
thread. This enables the BeginTrans call to communicate with each connection.
With the Versata Logic Server, this occurs as database connections from the
WebSphere pool are obtained for a specified thread.

As with transaction management, 2PC can occur automatically where the
WebSphere application server supports it.

Note: For WebSphere 3.5 this includes DB2 and Oracle.

50 Application Development Using the Versata Logic Suite for WebSphere

The connector architecture of the Logic Server offers a high-degree of
convenience and flexibility. As with container managed persistence, developers
do not need to program transaction boundaries or database details. In addition,
developers do not need to specify transaction attributes or database details in
EJB deployment descriptors. The connector used by a data object can be
modified during runtime, without re-deploying the object.

The Versata Logic server is shipped with a number of out-of-the box Connectors,
including one for each of the major relational databases. In addition, Versata
provides a standard interface definition and a set of transactional APIs for use in
developing customized Connectors.

4.5 Looking to the future: EJB 2.0 and JCA

We conclude the discussion of persistence and connectors with a look at two
upcoming Java standards — the EJB 2.0 specification and the Java Connection
Architecture (JCA). Both proposed standards overlap some of the functionality
now provided by the Versata Logic Server.

One of the first things we notice is that the Versata architecture has many things
in common with EJB 2.0 and JCA. This is probably not a coincidence, since both
Versata and the new J2EE specifications were designed to solve the same
problems surrounding distributed, heterogeneous applications. The similarities
should make it straightforward for Versata to adapt the Logic Server to use new
EJB and JCA functionality. In fact, Versata has announced support for both
standards as they become available for WebSphere.

It must be especially noted that when migrating between EJB 1.1 and EJB 2.0,
Versata customers may have a big advantage over most Java developers,
because rules-based automation abstracts away the implementation of EJB
relationships and persistence — the two big areas addressed in the new
specification. This may turn out to be one of the most significant advantages of
developing with a high level framework such as Versata.

To leverage new standards in hand coded components, development teams often
face fundamental re-writes of their applications. For instance, EJB 2.0 EJBs and
EJB 1.1 EJBs may not be mixed in the same container. When using a higher
level approach such as Versata's, however, an existing set of business rules can
be used to automatically produce a completely new set of integrated components
that comply with the changed specification. This transfers the migration burden
from the developer to the vendor. It also removes the possibility of introducing
new bugs into existing code.

Chapter 4. Architecture of the Versata Logic Server within WebSphere 51

Here we look at EJB 2.0 and JCA to understand their overlap and migration with
Versata.

4.5.1 EJB 2.0: Container Managed Relationships (CMR)

The biggest difference between the EJB 1.1 and 2.0 specification is the
significant change to Container Managed Persistence, especially support for
Container Managed Relationships (CMR) and faster EJB access (through local
interfaces).

Container Managed Relationships allow an EJB container to maintain
associations between container-managed entity beans. The relationships are
defined in the XML-descriptors of the EJBs and are implemented within the bean
with coordinating get and set methods for each logical field. The get method on
the “many” side of a one-to-many relationship is implemented with a Java
collection and iterated over when traversing the relationship.

The EJB container maintains basic referential integrity. For instance, in the case
of an Account with many Holdings, the container can automatically delete the
Holdings for a deleted account, and can ensure that a related Account exists
before inserting a Holding.

There are some differences between the new CMR and Versata's current
relationship rules. For instance, Versata relationships are automatically
bi-directional. In addition, there are several more enforcement options: child
objects can be automatically changed when parent objects change (their primary
and foreign keys will be automatically updated), parent deletions can be
prevented (rather than just cascaded), and so on.

The biggest value that Versata may offer when it migrates to the new CMR
scheme is in automatically coordinating the data model, the EJB implementation
and the deployment descriptors. CMR requires a high-degree of synchronization
between the logic implemented in an EJB (names and parameters of abstract
methods, for instance), and that placed in deployment descriptors (which must be
tied to EJB logical fields). These must be further coordinated with the exact
implementation of the get methods on each side of the relationship which differ
depending on whether a single object (one-to-one relationship) or a collection of
objects (one-to-many relationship) is being defined.

This degree of synchronization between data modeling, EJB development and
sophisticated deployment makes a strong case for automating the production of
these artifacts as a result of higher level rules — the approach taken by Versata.

52 Application Development Using the Versata Logic Suite for WebSphere

4.5.2 EJB 2.0: local interfaces

Another significant change in EJB 2.0 is the introduction of local interfaces. Local
interfaces allow EJBs within the same JVM to communicate with simple Java
calls and pass data by reference, rather than by value. This is designed to
address a major performance shortcoming in EJB 1.1 and is almost identical to
the approach now used by Versata (although the APIs differ and will be adjusted
by Versata).

In EJB 2.0, developers have the choice of either developing local EJB interfaces
(which inherit from a new EJBLocalHome) or providing remote interfaces (which
continue to inherit from EJBHome). A developer who wants to optimize local
access while also allowing for remote access, will need to create and coordinate
two sets of interfaces. Versata simplifies this process by creating local and
remote interfaces automatically. In addition, it automatically synchronizes
changes in an object's remote interface with changes to the local object.

4.5.3 Java Connector Architecture (JCA)

The other area of overlap between the current Versata Logic Server and the
up-coming Java specifications is the Java Connector Architecture (JCA). JCA
provides a Common Client Interface (CCl) that provides access from J2EE
clients, such as enterprise beans, JavaServer Pages, and servlets, to an
underlying enterprise information systems.

When implemented through application servers such as WebSphere, JCA will
take over part of the role now performed by the Versata Data Access layer.
Specifically, it will allow Versata applications to utilize adapters provided by 3rd
parties, instead of calling hand-coded Connectors written to Versata's Data
Connector API.

Versata is eager to expand connectivity using the JCA and says that future
versions of the Logic Server will fully exploit the standard. We do note, however,
that the current JCA specification (version 1.0) lacks support for metadata, XML,
and asynchronous communication. (The JCA 2.0 draft specification is working to
address these.) Until then, Versata support for these features will still be useful.

4.5.4 Other J2EE standards used by the logic server

Throughout this chapter we have alluded to a number of other places where
J2EE standards apply to the Versata Logic Server. For instance, the WebSphere
servlet redirector “finds” a Logic Server (Java Naming and Directory Service, or
JNDI). Also, the remote servlet “communicates” with the Logic Server (RMI over
[IOP).

Chapter 4. Architecture of the Versata Logic Server within WebSphere 53

Figure 4-9 shows a complete picture of the interaction of the Logic Server with
WebSphere and other components.

HITP
>
BT IROP
L0 P
™ J / dervler 2.2
fams JRPLE :
\: S
RMTAIOP
— =
3 = D

¥ |-
m A5C | RoBMS
""-_.____'_'_,_..f'
EIB LI 1
Versala Business - Other
[) JHES

(_..--"'—'_'___“‘--\] >
WP Tl —

AT
EMId WeRSmhere Ampfication Server (3.5}

Figure 4-9 Standards used for WebSphere version 3.5

4.5.5 Recap of the Versata logic services

This chapter concludes with a review of the services provided by the Versata
Logic Server, specifically those provided by the Transaction Rules Engine,
separate from any specific client tier. They are generally higher level services
than those provided by the J2EE application server and can be thought of in the
following way:

J2EE services free the developer from routine infrastructure programming to
concentrate on business logic, while Versata services free the developer from
routine business logic programming to concentrate on just those issues, like
connectivity to legacy systems, that are unique to his environment.

Most of these services have already been mentioned. Here we will highlight them
before moving on to develop the Trade application.

54 Application Development Using the Versata Logic Suite for WebSphere

Four service objectives
Versata services can be grouped around four objectives:

1.

Executing high-level, declarative assertions about a domain of business
entities, where those assertions (rules) were defined without regard to
sequence or dependencies

Providing a framework that allows the developer to customize and extend
constructed logic and preserves his extensions through repeated
development iterations

Enabling fast, convenient access by client applications for all business
functions (ad-hoc query as well as object update.)

. Optimizing the performance and persistence of inter-object logic, regardless

of the data source

The Versata Libraries, used by the VLSContext EJB at runtime, provide most of
these services. Detailing the Versata Libraries is beyond the scope of this
redbook, however, we can examine some of the classes for examples of their
capabilities.

For the logic server EJB itself:

>

>

>

Establish and destroy sessions to the Logic Server, maintain session context

Limit number of connections per logic server (before redirecting to another
server)

Maintain and report statistics on connections
Establish and maintain connection pools to data sources
Trace and report rules execution

Grant fine-grained authorization to business objects, including distinct
authorizations to update (versus insert), and to read specific attributes.

Manage the transaction cache

For data objects:

>

'S

Create, destroy data objects

Process queries using a datasource-neutral syntax (that is, masks whether
the source is SQL or not). Queries can use any attribute or combination of
attributes and may join objects

Explicitly get and set any attribute of any object
Find related objects

Get and set attribute of any related object by relationship navigation (no find
method required)

Chapter 4. Architecture of the Versata Logic Server within WebSphere 55

>

Listen to and respond to client or server “save” events
Maintain before and after data values for use in rules
Listen and respond to rule events

Apply defaults, performs calculations, adjust values, check constraint and
guarantee referential integrity

Listen and respond to user defined events
Call external methods
Formulate commit and rollback transactions

Maintain object metadata (attribute data types, lengths, defaults, formatting,
captions, validations, and so forth)

Provide object metadata to any function that calls for it.

For query objects:

>

>

>

>

Map attributes to underlying data objects (may be from multiple sources)
Derive virtual attributes
Overload names, captions and other metadata

Coordinate save operations to multiple data objects (manage parent and child
data objects)

For connectors:

>

>

>

Marshall data from data source to serialized arrays used by the client

Translate datasource-neutral commands to the syntax required by the data
source

Create the database or other connection needed to access the datasource

For client libraries:

>

>

'S

Provide ResultSets as arrays to client applications

Manage buffers, providing first, next, previous and last behavior
Incrementally retrieve rows as buffers are emptied

Maintain Old and New values of attributes

Provide cached data validation lists to client applications

Allow index array access to rows and attributes in the ResultSet
Support insert, delete of rows in the ResultSet

Access business object metadata (captions, update permissions, formatting,
and so forth)

Save changed ResultSets to the Logic Server

56 Application Development Using the Versata Logic Suite for WebSphere

Rule-based development

In this chapter we cover the development of the business logic for an application
with the same basic functionality as the Trade Application we outlined in
Chapter 2, “Trade application overview” on page 9. We call this new application
TradeX (Trade eXtended with Rules). TradeX logic supports:

>

>
>
>
>

Logging a user onto the system
Updating a user profile

Viewing a portfolio (a set of holdings)
Finding the quoted price for a stock
Buying and selling holdings

© Copyright IBM Corp. 2002. All rights reserved. 57

5.1 Introducing Versata Studio Business Logic Designer

In regard to the original Trade application, our current implementation has two
main points of deviation:

» First, the Trade application includes several functions to configure its multiple
runtime modes (EJB, JDBC, etc.). No special functions are built into the
TradeX application to support these modes. We assume two basic modes of
access:

— \Versata-constructed clients, which need no special set up

— Existing Trade client using Versata client-libraries, which will be explicitly
setup.

» Second, the Trade application provides for simple user login with minimal
security. User IDs are kept in the Trade database and passed as parameters
to servlet operations. Default Versata security, on the other hand,
authenticates users from an encrypted directory of users (or from other
authentication services supported by WebSphere). The Logic Server grants
attribute-level access for operations such as “read”, “update”, and “insert” to
authenticated users by their role. For TradeX, in the next several chapters, we
will use Versata's default security mechanism. When porting the Trade client
to Versata we will resume using Trade's original login scheme.

The Versata Studio is a high-level design environment for specifying, building,
and deploying business logic components (using the Versata Business Logic
Designer) and, optionally, HTML and Java applications (using the Versata
Application Designer).

This chapter covers the Business Logic Designer. Chapter 6 covers the
Application Designer.

5.1.1 Project approaches and roles

Although this redbook presents the development of the business logic tier and
the client presentation tier as two distinct processes, this is often not the case in
practice.

Versata projects sometimes use a rapid, iterative development approach (RID).
The ability to quickly specify and deploy partial business logic, and the ability to
incrementally add to that logic through the addition of new rules, allows an
approach where GUI development can proceed in parallel with business logic
development. The system is reviewed frequently by users to refine requirements.

58 Application Development Using the Versata Logic Suite for WebSphere

In addition, Versata projects often include business users and analysts as
development team members. When business users understand the rule-based
approach they can produce requirements that match Versata rules.

In addition to business analysts, Versata projects usually involve:

>

Application developers: These are familiar with Java, COBOL or a 4GL, but
not necessarily to the system level. In addition to developing with rules,
Versata provides an event handler model for most customizations. This model
should be easy-to-use by anyone familiar with a higher-level tool or language.
Programmers familiar with VisualBasic, JSPs, JavaScript, or other client-tier
“scriptlets” should find it easy to customize Versata-automated systems.

Web technology specialists: These will usually assist in setting up Web
servers, firewalls, etc. In addition, depending on the method of client-tier
development, Versata-automated or developed with other Web development
tools, these developers may use a Web development environment such as
WebSphere Studio. Alternatively, they may integrate other content
management systems such as Vignette.

Systems Architects: These will usually specify the end-to-end solution
architecture and be responsible for technology choices. System architects
ensure that new systems interoperate with existing software, comply with
corporate computing standards. Architects frequently trade-off the real world
practicalities of development with industry trends and best practices.

Systems Level programmers: These are familiar with enterprise integration
techniques and system level Java. Although Versata reduces the need for
system-level Java, in most cases experienced Java developers can add
enormous value to the team. Java developers can extend Versata Class
Libraries to create new rule types. Extended rules, customized for the
organizations' own business processes, can be leveraged by the entire
development team. Examples of such rules may include rules that access
legacy systems, rules that invoke external components, etc. In addition, Java
programmers familiar with VisualAge for Java can assist in tracing and
debugging the end-to-end execution of the system, through the servlets,
JSPs, and Versata Client Libraries to the Logic Server, Connectors and
custom components.

It is beyond the scope of this redbook to recommend a particular team
development approach. Versata does, however, issue “Best Practice” guides and
training courses which address pre-requisites recommended for team members,
the use of third party source code control with Versata, and the integration of
rules-based development into other well-known methodologies such as the
Rational Unified Process.

Chapter 5. Rule-based development 59

5.1.2 Versata repository

The repository is the basic organizer of a Versata-designed system. The
repository is a collection of eXtended Markup Language (XML) files that store the
metadata for all business objects and associated rules for a specific object
model. For team development, repositories are typically put under source-code
control. Any file-based control system can be used.

The Versata Logic Server can service any number of repositories. Each will be
deployed in a unique JAR file to the Logic Server.

Note: With a knowledge of Versata's XML rule-schema formats, it is possible
to populate a repository (enter rules and exchange rules, etc.) without using
the Studio Rules Designer. This use is beyond the scope of the Redbook.

A repository is initially opened as a named empty container. There are a several
methods you can use to populate the repository with initial object definitions:

Object definitions can be imported from a UML model (like Rational Rose).
Object definitions can be imported from database schema.

Objects can be defined using Versata Studio wizards.

Objects can be imported from an existing XML file.

vVvyyy

5.2 Step 1: Importing an object model

60

TradeX development begins by opening a new repository, as shown in Figure
5-1, and re-engineering the existing Trade DB2 database. After importing the
DB2 schema, you can view the Data Objects created, as shown in Figure 5-2.

Application Development Using the Versata Logic Suite for WebSphere

Yerzata Studio (EJB Edition])

Eﬂe Edit. Wersata LogizSeven Spplcation Buldl Mansgers Tools Windows Help

mlelw| Blelslt] X x| o] == &%) s
T r—
Eﬁ HTML archetypes
-2y Java Archetypes

Create New Yerzata Repository 2] x|

Save jf: Ia TradexFepositary _VJ ﬁl ._ i

File name: ITradeX.me

Save | :
Save as vpe: IXML Repository [* kL) j Caticel |

Figure 5-1 Create a new repository

E\r‘elsala Studio [EJB Edition] - E:ADuiRes
Eile Edit Versata Logic Server Application B

(el EEEE =]

Heengineeﬁng Manager =43 Data gb:em
Selected Schema Server Type Database: =] %cm;nt
— Ll
JIMCALER =] |oeauce = balance
hransactions
Server Data Objects Data Objects to Import B %I Halding
CCOUNT : D
HOLDING e
> | |prorE 2 syl
QUOTE pice
|ab]| quantity
b | REGISTRY amaunt
@y Profils
£ | -4 Duote
[+-&f Registry
a | S Query Objects

[} Sﬁ Client &pplications
-ig Repository Archetypes
% System Archetypes

5§ HTML Archetypes
Disconnect | | Impart Data Objects L Java Auchelypes

: Objects Iﬂl
Figure 5-2 Import DB2 schema and view data objects and attributes

Chapter 5. Rule-based development 61

5.3 Step 2: Adding relationship rules

For TradeX, there are several potential relationships:

1. Accounts have Profiles (one to one)

2. Accounts have Holdings (one to many)

3. Holdings have Quotes (many to one)

Defining these relationships as rules will enable the Logic Server to easily
navigate between related objects for rules processing.

A few decisions must be made when defining relationships; for example:
1. On which attributes will the objects be joined?

2. Which is the parent object (one) and which is the child (many)?

3. What referential integrity should be enforced?

The following steps take us through defining a relationship between an Account
and its Holdings:

» First, add the relationship, define the parent object, and define attributes for
their join, as shown in Figure 5-3.

Versata Studio (EJB Edition) - E:A\DurRedBook\TradeXRepositoryATradeX_xml

Fle Edt Vewsatalogic Server Zpoficaion Buld Managers Tooks Windows Help

aleE ElESE A X o] BlE] alwEm sl alelm

[e D e =]
423 Business Obiscts - — =
42 Data Oljects Atibutes Belationships | Covstrsits | Actions| Propetiss |
1@y Account
H uid
balance Felatiorshipe to ChE

Jat] transactions Relationships to Pare I
Holding

Prafile

Quote - -

ir: B (reate Relationship (%]

{igh Querp Dy)

I %ﬁmAp-:\iga Related Data Object:
- Repository A1
55) System Archetype
- HTML Archet
-Ig Java Archety

Account

% i a parent of

" iz achild of
Selected Data Object: E Relationship Editor %]
— Key Pair
Account Haldin
Add ud

Delete |

Dbjects

Ok I Cancel

Figure 5-3 Creating the Account/Holding relationship

62 Application Development Using the Versata Logic Suite for WebSphere

» Next, enter the details.

Here we chose to enforce the following integrity:

1. We cannot delete an Account object if it has associated Holdings.

2. We cannot insert a Holding object if it has no Account.

3. If the userID in the Account object is changed, then change its associated
holdings to retain their relationship.

In addition, we have named the relationships. The system will use this name for
Java methods that navigate the relationship as shown in Figure 5-4.

» Then, we create a standard error message if the relationship is violated.

The Logic Server will provide this error message through the client libraries.

Attibutes Relationships | Canstiaints | Actions | Froperties |

Gato Felated |

+ Holding(z] [Holding]

= Relationships to Child D ata Objects

Relationzhips to Parent D ata Objects

Referential Integrity Presentatio-n| Extende-d|

[V Enfarce Referential Intedrity
— On Parent Update

™ Prevent If Children

" Update Children

On Parent Delete

% Pravent |f Children

" Delete Children

" Null Children Fareign ey

On Child Ingert/Jpdate

" Prevent If Mo Parent

" Inzert Parert If Mone

— Emror Meszages Wwhile Preventing

[ielete Parent ICan't delete Account. Haz Holdings.

Insent/Update Child |Can't ingert Holding. Hags no Account,

Child Role M ame I hasHalding Parent Fole Mame I belongsT aécoount

Figure 5-4 Completing the Relationship rule

» Finally, the remaining relationships are defined in the same steps.

Chapter 5. Rule-based development

63

5.4 Step 3: Identifying additional rules

Typically, identifying potential rules begins in the requirements analysis phase of
a Versata project. Many development teams find it useful to extract potential rules
from “use cases”. Because the Trade application already has well defined
functionality, and because the initial business logic in those functions is rather
limited, we will identify some potential rules here, just before they are created.
We do this by mapping a functional requirement to its rule equivalent.

We will highlight some suggestions and return to the details when enhancing
TradeX with additional functionality in Chapter 9, “Integrating the IBM Trade2
client” on page 151.

The first suggestion is to understand that there is a top-down progression:

» From Business functions — which Versata defines as transactions that may
involve multiple steps

» To Requirements — defined as one of the steps in the transaction
» To Rules — the declarations about data at that step

Let's take the Trade business function: Buy a specified stock. The initiating action
will be a call to insert a new Holding for this userlD and stock symbol.

Note: The action may be initiated by the client through the Versata client
Libraries or through a EJB interfaces. Versata-automated clients create the
insert automatically as seen in Chapter 7, “Deploying the TradeX application”
on page 103.

The functions are:
1. Obtain the current price for the stock (attribute: Holding.price)

2. Obtain a unique identifier (primary key) for the holding (attribute:
Holding.indx)

3. Calculate the amount of the Transaction (Holding.price * Holding.quantity)
4. Update the number of transactions for the Account (Account.transactions)
5. Debit the Account balance with the transaction amount (Account.balance)

Let us identify the rules as we defined them in the Rules Designer:

1. Specify how to get the current price. This is done through a derivation rule
called a “parent replicate”. A Parent Replicate Rule allows us to goto a
related parent object (Quote), get an attribute (price) and replicate it in this
attribute (Holding.price) at runtime.

64 Application Development Using the Versata Logic Suite for WebSphere

In the rules designer, the steps are illustrated in Figure 5-5.

Business Rules DesigneHuIding
Attributes | Ealalmnsh\psl anstlamt‘sl ACUDﬂSI Ernparliesl
Mame [Deivation validation
usedD Requied
indx Requied, Prevent User Update
[symbal A . . q g
piice fepicate(used0rHolding [Quote] price] [Prevent User Update Wzlocticn | SN W [l Prasen@tlonl s l Ektendadl
amaunt
uantiy Requied
q‘ L2 & T Denvation Type |Parent Replicate | ¥ ¥ Persistert
: ~ Derivation Rul
Derivation] Walidation / Data Type | Presentgl\unl Motes | Exlendedl Data Object Attrbute
usedOnHolding [Quate] | |price x| din
Derivation Type |Parent Repicate *| W Persistent belongs Lo unk
- Denvation Rul
Data Object Btribute:

[ised g [Guot] [il
Qualification Expression

I~ Maintined

Figure 5-5 The rule to get price from quote object

2. Get a unique key for the Holding.

In the original Trade application, a cached block of serially numbered keys in
the client-tier is created and a new one is passed to each Buy function. The
key is used to create a unique identifier for a holding and is stored as the indx
attribute. The last key used in a block is stored in an entity EJB.

In our first pass through TradeX, we will implement the serial key function
differently. Instead of using Trade's EJB-to-cache function, we will use a
built-in Versata capability — the autonumber datatype. By defining the indx
attribute as autonumber, Versata Logic Server will be responsible for
obtaining a unique, serial key for the indx attribute. It does this using the
underlying database's serial datatype.

Figure 5-6 shows how an attribute's data type is assigned. Note that the indx
attribute is mandatory. If the system cannot assign a key, an error will be
produced. We have supplied an error message that the Logic Server will give
to the client application.

In addition, we have marked that the attribute is required and cannot be
updated by the user. This metadata will also be passed to the client. When
Versata constructs a client (using the Versata Presentation Designer), HTML
forms will be constructed using this metatdata. If the developer provides his
own client, this metadata can be used to drive client behavior.

Chapter 5. Rule-based development 65

'E Busziness Rules Designer - Holding

Attributes | Belationshiﬁsl Qonstraintﬂ Actioﬁsl Erc-pertie:sl

R [Derivation [alidation

uzerlD Fequired

inde [[Requied. Prevent User Update
symbal

price

quantity Fequired

amount

| »

Qerivalion. Walidation / D'ata Type I Presentgtionll Notesll Extendedll

Walidation Type —Walidation Condition

{+ Conditian ;I

|
= Coded Yalues List

"W alidation Error

iTlansaction rolled back. Couldn't get nest index

Data T-"'pel.ﬁ.utoNumber vl ¥ “alue Required

W Preseent Uzer Updates

Figure 5-6 Unique key autonumbered

3. Calculate the transaction amount. The Trade database does not have an
attribute for the transaction amount. Amount is calculated at runtime and not
persisted.

Versata supports non-persisted variables. We simply create a new attribute
and unmark its “Persisted” property.

Rules can be defined for the runtime attributes just like persisted attributes.
Here we define a “formula” derivation rule to calculate the transaction amount.

The logic to calculate amount is: normally, the amount of the holding equals
the quantity purchased * the price of a share (which when the holding is
inserted, is replicated from the Quote object.) However, when selling
(deleting) a holding, the current share price must be retrieved from the quote
object.

66 Application Development Using the Versata Logic Suite for WebSphere

Therefore, the rule to calculate amount says:
If (Deleting)

Then

$value = (getusedOnHolding().getprice()) * quantity
Else

fvalue = price * quantity
End If

This is illustrated in Figure 5-7.

Business Rules Designer - Holding B

Attributes I Eelalinnships.l Ennstraints.l .":".I:tiDﬂS.I Eruperties.l

Name |Derivatinn |Validatinn

LzerD Required

irnd; Required, Prevent Uzer pdate
aymbal

price Replicate(uzeddnHolding [Quate].price] Prevent Uszer Update

quiantity Required

armnant [Mot persisted] IF [Deleting] Then Prevent User Update

Derivvation I Walidation # Data Tupe I F'resentglin:nnll Nulesll E:-:lenu:led.

Derivation Type IFu:urmuIa j [Persistent

— Formula Exprezsion

[t Deleting] Then ﬂ

$value = [getuzedOnHaldingl]. getprice(]] * quantity

Elze
$value = price * quantity
EndlIf

Figure 5-7 Creating a non-persisted attribute for the transaction amount

Chapter 5. Rule-based development 67

4. Update the number of transactions for the Account (Account.transactions).

This rule relies on the Logic Server to understand that there are transactions
flowing through the system with the potential to update an Account object.
The business rules compiler will understand this potential. (The change will
be triggered by our next rule that updates the Account balance.)

This rule also relies on the Logic Server to maintain old and new values of
attributes before transactions are committed.

The rule in Figure 5-8 says, if this is a new account (account is being
inserted), then the transaction count is zero. Else, if the Balance is changing,
increment the transaction count.

Attributes ; Eelationshipsi Qonstra\nls; Actioﬂs; Emperliesi

M ame [Deiivation [valigation
Lid Required
balance

transactions If [Updating AND [Balance < Prevent Uzer Update

1

Derivation ; “alidation / Diata Type i Presenlglion.] Notes.; Extended

Derivation Type |Famula v V' Persistent

~ Formula Expression

[F [Updating AMD [balance <> :0ld balance]) Then _f:j
$ralue = :0ld branzactions + 1
Elzeif [Inserting) Then

vale = 1 Eﬂule Builder - Create Formula: [Account] B
Endif Rule Expression
1F| Updating AND [bakance <> -0l balance]) Then = 41 : <1<;i l >1>;i ,l 5 [i 1!<>
$value = Old ransactions + 1
e (nstna) Then Dvi And i Eetweeni Like 1 In 1 Is | Nul i Nat
e =1
Endif
Aftributes Keywords
uid Inserting
balance BD‘daUnD
! 1 elefing
ransactions o

1-Then Conditions

[-Then
[-ThenElse
[T henE lseit Else
IIF(]

Methods

Datalbject Methads.

Object Brawser...

date

User

isChanged

ishul
isldhull

_v] 0K s, Cancel

Figure 5-8 Rule builder is used to “point-and-click” the rule

68 Application Development Using the Versata Logic Suite for WebSphere

5. Debit the Account balance with the transaction amount.

There are several rule patterns for explicitly updating related object “when”
another an event occurs. A completely non-procedural option is to create a
non-persisted transaction amount in the Account object that copies (sums)
the transaction amount from Holding and adjusts the balance with it
automatically.

We will show a more procedural approach that is better understood by Java
programmers. It involves creating a “debit” method for the Account entity to
allow it to debit its balance attribute. We will call this method from an
event/condition/action rule on the Holding entity as shown in Figure 5-9.

The first step in creating a method is to open the Java class that has been
created by the system from the rules already entered. This is done from the
“Files” tab of the Versata Studio. The main file is the Accountimpl.java file.
(You will notice that the EJB artifacts Account.java and AccountHome.java for
the Remote and Home interfaces have also been created.

The Versata Studio contains a small Java editor for entering most business
object customizations. (Developers familiar with VisualAge for Java may want
to import objects into that environment for extensive customizations.)

The Versata Studio Code Editor prevents changes to the “protected” part of
the object's source. Here we add the debit method to the end of the file.
(At the same time, we enter a credit method to use when selling stocks.)

Customizations to an object's source code are preserved, even when the
object is re-created. (Recreation happens when the business rules compiler is
called.) Each new repository build will extract customizations, rebuild
changed objects and replace the customizations automatically. This enables
rapid and error-free development iterations.

Chapter 5. Rule-based development 69

70

Versata Studio (EJB Edition)] - E:A\DwRedBook\TradeXRepository\TradeX. xml
File Edit “ersata Logic Server Spplication. Buld Managers Tool: Windows Help

ale| BlEslE & = el 2E &% 2 alemn

@ Repozitary Files
E-E3 Versata Logic Server
E@ Drata Objects
E Account
@ Accountimpl.java
2] Accountjava
3 AccountHome java
2] AccountDD.ml
@ Holding

-y Profile

@ Quete

2R 'n Registy
'E?_% Query Objects
'S_q #DA Connectors
&) Other Files
[]--?ﬁ Client &pplications

B Code Editor - Accountimpl.java =

E ﬂ Members I j

zdac = createXDAConnector(session);
return =dac:

SEE
*® <hry
* @RECOMPUTE: This routine forces recalculation of fornulass
*7
public void Recomputelerivations()
thiz =stFormulaValues();
i
##END_COMPONENT_RULES}}
##{{EVENT_COLDE
#+END_EVENT_CODE}}

public void addlisteners() {
#/{{EVENT_ADD_ LISTENERS

#/ERD_EVENT_ADD_TISTENERS}}

public void debit({double amount) {
=zetBalance(getBalance() - amount);
=avel();

public void credit(double amount) {
zetBalance(getBalance() + amount);
savel);

| |

Obiects Files |

K]

3
o

Figure 5-9 Debit and credit methods are added to the Account Java source

The final step in updating the account balance is the event/condition/action rule
on the Holding entity. There is one rule for “Buy” which occurs when holdings are

inserted. There is another rule for “Sell” which occurs when holdings are deleted.

The Buy rule is, if inserting, get the related account (this is the relationship name

we defined with the relationship rule between Holding and Account), then invoke

that Account's debit method for this amount. Simple as that!

Figure 5-10 shows the window for defining event/condition/action rules. Note the
pop-up that allows browsing for the relationship navigation method.

Application Development Using the Versata Logic Suite for WebSphere

Attr_\hutesi ﬂelatinnsh\psi LConstraints ACtiUﬂSl Properties

| i
Thiz credits the Account.balance for a gell operstion. Assum|

Action Mame |Buy

£ vent Condition 5. Enterprise Object Browser =13
Insetting " Bystern ' Repositary Refresh gemi?: 3\;3:2:‘:5
OhiectLibraties [~ Protected ¥ Protected
IData Ohjects ;J A | A% I~ Private I~ Private
Aetion (Method Call) Classes
gethelangsT adecaunt]) debitlamount) &y Account % addListeners =
I Holding 9 createRDAConnector
I Profile @ createxXDAConnector
I quote @ getamount
I3, Registry L |
@ getComponenthame
@ getinds
Drescription @ gethetaluery
This debits the Account.balance for a buy operation. Assurmption - buyit % getewlbject
halding % getDbjectBykey
% getlbjectCount
@ getObjects
% getlbjects
% getDldbelongs T ohccount -
< o

Figure 5-10 Defining the action to debit the user’s Account

Note: The simple business logic of the original Trade application makes it
possible to translate business functions into insertions and deletions from of
Holdings. In Chapter 9, “Integrating the IBM Trade2 client” on page 151, we
will implement a more likely business scenario that includes a separate
transaction entity. Transactions will occur against holdings, allowing for the
partial sale of a holding.

Chapter 5. Rule-based development 71

5.5 Review of the steps

72

With those three steps we have completed the EJB-tier of our application. Let's
review the steps before moving on to deployment:

1. Import the initial data model from DB2.
2. Define relationships associating Holding to Quote and Holding to Account.
3. Identity requirements and enter their rules

The requirements, followed by their rule were:
Requirement: Obtain the current price for the stock (attribute: Holding.price).

Rule: Define a parent replicate rule on price, getting the price from the related
Quote.

Requirement: Obtain a unique identifier for the Holding (attribute: Holding.indx).

Rule: Use the autonumber data type for the indx. The system will automatically
create and assign a sequential number.

Requirement: Calculate the amount of the Transaction

Rule: Define a new, non-persisted attribute “amount” and derive it as price *
quantity.

Requirement: Update the count of transactions for the Account
(Account.transactions)

Rule: Define a rule that when an account object is “touched” the system will
evaluate whether the change is an insert or update operation. The object has
been inserted operation (new account), the transaction count will be zero. If the
object has been updated, and if the balance changed, then the count of
transactions will be one more than it was.

Requirement: When buying, debit the Account balance with the transaction
amount of the Holding. When selling, credit the Account balance with the
transaction amount of the Holding.

Rule: Define the debit and credit method on the Account object. When inserting
or deleting a holding, navigate to the associate account (by relationship) and
debit or credit the balance.

Application Development Using the Versata Logic Suite for WebSphere

Designing an HTML client
application

In Chapter 5, “Rule-based development” on page 57, we described the creation
of the business logic tier of the TradeX application using the Versata Transaction
Rules Designer.

In this chapter we explain the creation of an HTML application using the Versata
Presentation Designer.

© Copyright IBM Corp. 2002. All rights reserved. 73

6.1 Versata Presentation Designer

The Versata Presentation Designer is a modeling environment where application
pages, page elements, and transitions (links between pages) are specified. It can
be used to specify both HTML and Java applets applications.

In the Designer, wizards are used to gather information about application objects,
such as what data will be presented, how it is to be presented, and the flow of the
application. A drag-and-drop pallet shows the overall application model, with the
application flow diagram on the right, and the list of application pages and their
elements on the left, as shown in Figure 6-1.

®ersata Studio (EJB Edition) - E-\0urRedBookiTradeXRepository TradeX. xml
Eile Edit ‘fersatsLogic Server Application Build Managers Ieck ‘windows Help

ﬁlﬁlﬂlglﬁlalil_l_lﬁulglil_lﬂlﬂlilﬂﬂ_l

F 3 Fepositon Dbjects B Application Designer - TRADE_X
B Business Objects
=3 Client Applications
EH23 HTML Applications
=% ReadTradeData
=B TRADE =
+-EE StartupFPage
= Hame
1 Tlaccount
L, T2QuoteBuy
- Ly T3Pontfolio
Ly TaPiofile

-3 QuateBuy
=3 Portfolio
-89 Tlaccount
98 T2Holding
Ly, T3Home
Ly TdQuoteBuy
Ly, TSProfile
= Frofile
-8 T1Profile
L, T2Home L
Ly T3QuoteBuy
Ly TaPartfalio
=gy Archetupes
-Lah ARP
[+l Button
—oh Column
-Loh Fom
—ah Misc
—ob MoDataForm =

Objects [_Files] gl
Figure 6-1 The TradeX application model

% QuoteBuy

==| Portfolio Profile

The Application Designer illustration in Figure 6-1 shows the completed model
for the TradeX application. These are the application pages:

Home: Shows basic account information.

QuoteBuy: Allows the user to obtain a quote and buy stock.

Portfolio: Shows the user's holdings and allows the user to sell holdings.
Profile: Shows detailed information for the account.

vVvyyy

The Presentation Designer generates application elements from “archetypes”
(templates) which are part of the Versata system library. For HTML applications,
archetypes are primarily composed of HTML code and specialized Versata tags
(macro code) which allow the pages to be generated and processed by the
Versata Presentation Engine.

74 Application Development Using the Versata Logic Suite for WebSphere

Just as the Transaction Logic Designer creates a Java class for each business
object defined to Versata, the Presentation Designer creates a Java class to
process each HTML page defined to the system. These Java classes are
included in the class path of the PLSContext, which, as we saw in Chapter 4,
“Architecture of the Versata Logic Server within WebSphere” on page 39, is
installed into WebSphere.

The Versata Presentation Designer automatically creates an architecture,
Model-View-Controller, similar to the architecture we saw with the IBM Trade
client. The HTML pages comprise the “view”. A combination of an application
servlet plus the Java classes which drive the pages comprise the “controller”.
The business logic tier comprises the “model”. This is shown in Figure 6-2.

Profile.htm| | Portfelio.htmi

Presentation Engine

Controller
Model %ﬁ@ —

Transaction Rules Engine

RDBRTS
WebSphere EJB Container

Figure 6-2 MVC architecture of the Presentation Engine

The primary difference between the IBM Trade client architecture, reviewed in
Chapter 2, “Trade application overview” on page 9, and the Versata Presentation
Engine architecture, is Versata's use of Java classes instead of Java Server
Pages to control page behavior. (Versata's presentation architecture pre-dates
the JSP specification.)

Chapter 6. Designing an HTML client application 75

Note: Options for those who want to use JSPs will use the Versata JSP Toolkit
or Versata Client-libraries instead of the Versata Presentation Designer and

Engine.

6.2 Overview of the completed application

Before beginning to design the TradeX client tier, we review what the completed
application will look like. Later in this chapter, as we design each application
element, you will probably want to refer back to these completed pages.

6.2.1 Login page

The Login page is shown in Figure 6-3.

]Eile Edit View Favoites Tools Help

/3 Login - Microsoft Internet Explorer provided by MSN

5 e »
€ . . [@ a @ P B 9 9 Links
EEck Fonard Hame Search Favortes History Mail Print Real.com

Addiess [i@] htp./ocahost/webapp! Trads/TRADE X | @6
-
r Application
Overview
Techmeal
Documentation TradeX
Business Logic automated by the Yersata Logic Server,
Benchmar Application Logic automated by the Yersata Presentation
Server, To illustrate the use of business logic automation for
Co 1o, WebSphere Applications
el I
s
Erimitives
Setup
Thstructions
Current Market Conditions
Dowr Jomes Inustrial 10,000 (+25)
Hasdag Camposite 4400 (+23)
-
4| | »
Figure 6-3 TradeX login page

76

Application Development Using the Versata Logic Suite for WebSphere

By default, the application servlet will present a Login page for each new user
session. The Login page connects a user, via his userlD and password, to the
Versata Logic Server.

As we have outlined, the Transaction Rules Engine within the Versata Logic
Server controls a set of business objects defined to Versata. The TradeX
application will use the Versata client libraries to establish a connection (session)
with the Logic Server. Both the Login.html page and the application servlet are
automatically generated by Versata.

The TradeX Login page includes a Versata standard login form, and top, left and
bottom “banners” that have been customized in an HTML editor. The Login page
is the only page that requires editing to display these banners. Subsequent
pages in the TradeX application will instructed to display these banners by setting
page properties in the Presentation Design tool. (We will see this in the
development process.)

Note: The mechanism for verifying the user name and password can be
specified in the Versata Console. Choices include using any authentication
mechanism supported by WebSphere (such as the local operating system or
an LDAP service) or using Versata's default user registry. In this version of the
TradeX application, we will use Versata's default security configuration.

Chapter 6. Designing an HTML client application 77

6.2.2 Home page

The Home page is shown in Figure 6-4.

|8 Localintranet

/ Home - Microsoft Intemet Explorer provided by MSN [_ O] =]
| Bl Edi Yiew Favoites ook Help ‘
5 = »|
L R A s B R NG R It
Back Fongar Stop Refiesh Home Search Favortes History Hail Prnt Realcom
| Address [#€] g /acabostiwebapn Trade#/TRADE % -] @
El
0
A WehSphere/Yersata Logic Server Application
Owerriew
Technical
[llynaty Home Quote Buy Portfolio Profile
Bl Logged in
Welcome! Here's a recap of your account.
Confisuration UserlD uid:1
Balance 201819.0
Go Trade|
s Transactions 7 %
Wb
Primitrres
Please select from these available services,
Setup
Instructions
Current Harket Conditions
Dowr Jares Buustrial 10,000 (+25)
Hasduq Composite 4,400 (+23)
@] Done |

7

Figure 6-4 TradeX home page

The Home page contains information from the Account business object and the

transitions (smart “links”) to the other pages: QuoteBuy, Portfolio and Profile. It

includes the same banners as the Login page.

78 Application Development Using the Versata Logic Suite for WebSphere

6.2.3 QuoteBuy page

The QuoteBuy page is shown in Figure 6-5.

3 QuoteBuy - Microsoft Intemet Explorer provided by MSN [0 x|
JEMe Edt Wiew Favoites Tools Help ‘
3 =k
= s @ @S @ @ @ %' @ Links
Back Fonyard Stop Refresh Home Search Favortes History Mail Print Real.com
J Addiess IE hitp://lacathostwebapp/TradeX/ TRADE X j @G”
(J

_—

A WehSphere/Versata Logic Server Application

Overview
Technical
Documentation QuotEBuy Home Portfolio Profile
Benchmarki UserlD uid:1
Configurabon pjoter Quotes delayed up to five minutes. You may buy or choose from the available services.
To obtain a quote, choose the symbaol from the pull-down list.
Go Trade! :
Symbal lovantiy |
Web o A 7
e N
Setup /A Select - Microsoft Intemet E xplorer provided by MSN [_[o[=]
Instructions _ =
Select
[Concellsymbol | priceloetails |
Si s:0 97.0 details
151.0 details
20.0 details
88.0 details
44.0 details
55.0 details j
0.0 details I 1 -
‘@ 108.0 details riﬂ Local intranet A
X 18.0 details
@519 65.0 details

(<< < > >>[From1to 10 Total: 10+

Figure 6-5 QuoteBuy page and Quote Pick List

The QuoteBuy page contains one attribute from the Account object (the UserlD
at the top) and one row from the Holding object (ready for insertion.)

Before inserting a holding, the user can click the “down-arrow” control next to the
Symbol box. This will display a list of stock symbols with their prices. The “<” and
“>” controls allow navigation forward and backward through the list of stocks.

Chapter 6. Designing an HTML client application

79

From this list, the user can select a stock and the symbol will be copied into the
QuoteBuy grid. To complete the transaction, the user enters a Quantity and clicks

Buy.

6.2.4 Portfolio page

The Portfolio page is shown in Figure 6-6.

3 Partfolio - Microsoft Internet Explorer provided by MSN

] Fie Edi Miew Favoites Toos Help
5 = »
] AN e - A Linke
Back Fargard Stop Refresh Home Search Favontes History tdail Print Real.com
s] hip./locahos!/webapn/TradeX/ TRADE ¢ | @6
=

Overview Portfolio Home QuoteBuy Profile
Technical Status - Portfolio Request
Documentation Holdings for:
Benchrar UserlD uid:1
Configuration To sell a holding, select it and choose SELL

[el | el o]

Go Trade| o 1s:1 151.0 100.0 15100.0

Web (ol aligid 8.0 0.0 4400.0

Primtives 1] 359 650 750 4375.0

L8] 4514 440 1000 4400.0

‘@ javascript submitForm(document Partfolio, T 2Holdingdelete=T 2Holdingdelete’, *_sel): ‘ | ‘fﬂ Local intranet j

Figure 6-6 Portfolio page

The Portfolio page contains information from the Account object (the UserID at
the top) and a grid (table) of Holdings associated with the Account. Some things

to note about this default grid are:
» Rows may be selected using the radio button on the left of the grid.
» Clicking Sell will sell the chosen row.

» The grid automatically displays the number of rows found (“Total: 4”) and
being displayed (“From 1 to 4”).

80 Application Development Using the Versata Logic Suite for WebSphere

» The grid is sortable by any column. This is done by clicking the column
heading (Symbol, Price, etc.)

6.2.5 Profile page

The Profile page is shown in Figure 6-7.

/3 Profile - Microsoft Intemet Explorer provided by MSN

[_[D[x]
Fle Edt View Favoites Tools Help |
. E »
& 9 0 Gy | @A B 5 @ Liks
Back [overd Stop Rshesh Home | Semch Fevortes ity | Mal Pint Aealcom
| Addbess [&] b /Mlocahost/webepp/ Trade/ TRADE v| wee
L

=

A WehSphere/Versata Logic Server Application

Overview
Technical Profile Home QuoteBuy Portfolio
Documentation i
Account details for:
EBenchmarl To update your account, make changes and press SAVE
s zx S Undo |
s Hame [ireriBa? last4ans
Go Trade! Email [uid: 1@47 com
CreditCard [704 Qak Street
Yich creditCard [45 604-355-331
Primitives
Setup
Instructions

<]

¥ Localintianet v

& javaseript submiF arm{document Profe, T1ProfleS avedlT1FrofieG avedll, _sel [T

Figure 6-7 Profile page

The Profile page contains data from the Profile object. Users can change
information and “Save” the changes. Because we chose the “buffered” save
mode for this data source, the user is free to move around the fields to making
several changes before they are sent, in a single statement, to the Versata Logic
Server for processing. Before choosing to Save the changes, the user is free to
back them out using the Undo button. Other Save modes for application data will
be examined as we build the application.

Chapter 6. Designing an HTML client application 81

6.3 Beginning application design

The definitions of applications are kept in the Versata Repository, along with the
business object model and business logic rules. An unlimited number of Java and
HTML applications can re-use the same business logic components.

6.3.1 Choosing the application style

82

A new application is begun by in the application designer by selecting the
application Style. The style determines which set of application object
archetypes will be used, as shown in Figure 6-8.

E"Jersata Studio [EJB Edition] - E:ADurB edBook\TradexRepository\ TradeX. x
File Edit “ersata Logic Server Spplication Buld Managers Tools Windows Help

(ol HlslE] X x| 9l 23] El%l@ =

| Fepository Objects
.é Business Objects
=14y Client Applications
&

FreadT radL MMM HTrI'dL'u'F”hD' -
- e Java Application...
TRADE_x (R
\WiiteTrade Add Application from kL.
. W ribest _‘ Choose Application Style
by Java Applicatiore—
[+-—ay Fepositony Archetypes
_é System Archetppes
gy HTML Archetypes
[+ Java Archetypes

Select a style for the new application.

The selection sets the application archetype directory
and may be changed later using the Archetype
Propetties sheet in the Application Explarer,

SlatecrayHTMLArChetypes
System Default

Preview

Style Description
e —

Presentation Design extensions w1 HTML
archetype set, This et incorporates many
features, and uses a 551 styleshest,

Help | Cancel = Atk Mext = Einish

Figure 6-8 New application using a style

Application Development Using the Versata Logic Suite for WebSphere

Automating application construction from a set of archetypes speeds
development and ensures a consistent look and feel across an organization's
applications.

Here we overview some of the main characteristics of archetypes in order to
understand what is occurring behind some of our application design choices.

6.3.2 Archetypes: a brief overview

Archetypes are smart, graphic templates for application objects such as pages,
forms, tables, rows and buttons. Archetypes for HTML applications consist of
standard HTML code to control object formatting and special tags (using a
Versata macro language) to specify how the Presentation Designer will expand
the archetype to create the object.

Several sets of archetypes are delivered with the Versata Presentation Designer,
and Versata customers modify these to create object templates that reflect their
corporate look-and-feel.

The TradeX application is build with the Presentation Design Extensions (PDX)
archetype set. PDX archetypes are a relatively new addition to the Versata
System and allow many object properties, such as page captions and branching
conditions, to be set through properties, instead of customizing the HTML or
macro code. The overall appearance of the archetypes is controlled by a
Cascading Style Sheet. Master colors, fonts, and other formatting are set in the
style sheet and automatically flow through to the pages constructed by Versata.

As we build the TradeX application, you will notice that the design wizards
present many choices. For instance, when creating an HTML page, the wizard
will present archetype choices that specify whether the page will be a modal or
non-modal page, whether it has a toolbar, and so on.

While details of the archetype system and macro language are beyond the scope
of this redbook, they are explained in The Versata Developer Guide
downloadable from Versata.

Chapter 6. Designing an HTML client application 83

6.3.3 Designing the Home page

HTML pages display information from one or more RecordSources. A
RecordSource is the application view of a Versata business object. At design
time, the developer chooses an archetype for the RecordSource and can set
RecordSource properties to refine its default behavior.

As a new application is created, the application wizard will prompt for the
business object to be used as the primary RecordSource on the initial page.

Since the Home page displays information about the user's Account, we choose
the Account object, as shown in Figure 6-9.

24 Versata Studio [EJB Edition] - E:\0urRedBook\TradeXRepositoryh TradeX_xml

File Edit ‘ersataLogic Server Application Bulld Managers Tool: ‘Windows Help

s S| alelslEl Al %] €] alal %4 = ale|

G Repasitory Objects Chooze Main Source of Data for New Page
=123 Business Objects
=3 Data Objects Yersata pages are normally data-driven pages where the

displayed data comes from automatically built queries based
on the chasen RecordSource. An empty page has not
specified a main RecordSource, The developer manages all
controls and data on these pages. An external page comes
from another application and is not validated.

----- g Query Obijects
244 Client Applications
=3 HTML Applications
: :miedcTﬂ 0 Data Obiects | Query Objects |
gadlradeD ata
TRADE_X
‘writeTradeidata
Wiy
----- —#4 Java Applications
[:I---.é Repository Archetypes
.d System Archetypes
- HTML Archetypes
.d, Java Archetypes

(o Data-driven page e Empty page I External page

Help | Cancel | <= Back Nexk = Einish

Figure 6-9 Account RecordSource on the home page

84 Application Development Using the Versata Logic Suite for WebSphere

Figure 6-10 prompts for the archetype to be used for the Account RecordSource.
The DisplayReadOnly choice will assure that the data is presented in a simple
form (not a table) and cannot be updated.

Chooze Digplay Style for Account Data

Select an archetype Far displaying Accounk:

Archetype Descripkion =
Display {Scalar) Single row,
DisplayJEF

{2BF) Single row in query mode.,

wReadOnly

(Scalar) Single read-only row.

DisplayUpdatable (Scalar) Single row,

Grid (Grid) Mulkiple read-only rows
displayed as a table, hd
| | 3
Specify Attributes |

Help | Cancel Mext = Einish I
b

Figure 6-10 Choosing the archetype for the Account Record source

Chapter 6. Designing an HTML client application 85

86

Figure 6-11 prompts for the archetype for the page. The Default choice provides
us with a non-modal page that we can navigate using “transitions” (links to other
pages). Versata builds these transitions from our design. In this panel the name

of the object (used in constructing the page's Java page) and the Page Caption

(used as the label in the page title bar) are also defined.

Chooze Page Style |

Choose a page style,

You may also change the defaulk name and caption For
the new page.

fArchetvpe Description ﬂ
CustomPickMultisele: Page For multiselect cuskam pick
recordsources, Special Form For J

Diefault Default page with independent
kransitions at top of page,

DefaultReadOnly |Page For display only
recordsources, Displays all =
i | ’

Page Mame: IHu:ume

Page Capkion: IHu:ume

Help | Cancel < Back | Bext, = | Finish |
s

Figure 6-11 Choosing the archetype for the home page

Application Development Using the Versata Logic Suite for WebSphere

When the user selects Finish, the page will be displayed on the right panel

(the pallet) of the Application Designer. Notice that the Home page object is listed
under the “Project 1” application in the left panel (Object View) of the Studio.
(We have not named the application yet). The RecordSource “Account” is
displayed under the page icon. As we continue to create the application, other
pages and their objects will be shown. An illustration is given in Figure 6-12.

N Yerzata Studio [EJB Edition] - E-A\0uwrR edB ook TradexR epositoryi T radex_xml

Fil= Edit ‘“ferzataLogic Server Application Buld Managers Toolz: Windows Help

] R =1] Y _| _|_| alal &Iﬁlﬂﬁ.l = ale||

‘3 Repasitory Dbjects

== Business Objects
=423 Data Objects
-G Account

I ' Regiztry —=
- agh Duer_l.J Objects ==
2423 Client Applications Add RecordSource. .
Ela HTML Applications Add Page Transition...
-8 Project] Add Action Element...
-8 StartupPage Add Component...
E| E Harmne Delete Page
' "T T1Account 7
E| a Archetypes Rebuild Page Layout
- _é &pp View Page Layout
_é Button View Server Page Code
[y Column Wiew Server Page Ewvents
[+-—gy Form
- Misc L ey |
_é Mol ataFarm

Figure 6-12 Refine the page properties

Chapter 6. Designing an HTML client application

87

The final step in creating the Home page is setting the properties for the Page
and the properties for the RecordSource, as shown in Figure 6-13.

i Page Properties - Home |
Main | HTML Objsct |
Hame LCaption
IH::-me IH::ume
Archetype Dezcription
IDefauIt I ;I
Tranzitions to Me. . | ;I
E xtended Archetype Properties I
B | Comments -
CormentsT railing Pleaze zelect from the available services
Crurmb T raillE nabled falze o
CrumbTraillncludesThisPage | true
Crurmb T railR eztartzHere falze
CrumbT railSeparator »
ErrarStyle Popup -
| |

Figure 6-13 Properties for the home page

We set page properties for the Home page to include:

» Comments: This is text (and optional HTML formatting tags) to be included at
the top of the page. Here we set the Welcome message.

» Comments Trailing: This is text to be included at the bottom of the page.
Here we set the instructions regarding how to navigate the page.

» CrumbTrail settings: Here we indicate that previously viewed pages should
not be displayed.

» Borders: Here we direct that files containing the static HTML for the top, side,
and bottom banners should be used.

88 Application Development Using the Versata Logic Suite for WebSphere

Next we set the properties for the Account RecordSource. Since a RecordSource
has potentially more sophisticated behavior than the page, its property panel
includes several tabs as shown in Figure 6-14.

*“2 RecordS ource Properties - T1Account |

G T | Huery | Atibutes |
Clazs Mame
Iversata.pd:-:.html.DataSnuru:eF'DK j Reqizter... |
Save Mode Fetched Block Raow Count
I Immediate j |1 E
I Allow Delste M ax. Grid Row Count
[Allow Inzert |1':I
[Allowe Update [~ Pre-fetch Row Count

werzata. pds. bitml.DataSourcePDE Properties

Figure 6-14 The Account Record source properties - HTML object tab

The HTML Object Tab shows:

>

Class Name: This is the base Java class for the generated object. The
component generated by the Versata System will be derived from this class
and the component code will be automatically added to the Page's Java file.

Save mode: For every RecordSource you can indicate whether changes to
object should be saved immediately after the change is made by the user or
only when the user clicks a Save button.

Fetched Block Row Count: This sets the number of rows to be retrieved at a
time. Subsequent rows are retrieved in this increment.

Grid Row Count: This sets the number of rows to appear in a grid at runtime.
Rows are scrolled in this increment.

Insert, Update and Delete boxes: When checked, this indicates that these
operations are permitted on the RecordSource.

Chapter 6. Designing an HTML client application 89

Next we set the Attributes properties for the RecordSource. Here we have
indicated that all of the attributes from the Account object should be displayed on
the page, as shown in Figure 6-15.

2 RecordSource Properties - T1Account |

Main | Ouew ©_ Atrbutes || HTMLObject |
Fezet to Defaults
Salars |

uid :

balance [Mzplayed on Fage

transactions ﬂ et izplayed on Bage

B
Dizplay Al B equired
tichetype [T ze Sustem efault
Tranzition Object to Uze
** Mot dizplayed.

Figure 6-15 Choosing Account attributes for display

Finally, we set the Main properties for the Account RecordSource. (We
demonstrate the Query tab in the next section). The Query to be used on this
page has not been set yet. It will be set when we edit the transition from the login
page to the home page, as shown in Figure 6-16.

90 Application Development Using the Versata Logic Suite for WebSphere

““a RecordSource Properties - T1Account |

Man | Guew | Awibuwes | HTML Object |

Data/Cueny Object Mame Erefix for Elements

Acount _I IT1

— RecordSource Archetype
== | [DisplayR eadOrly |
Extended Archetype Properties _I
Caption "
Comments Wwielcomel Here's a recap of pour Acco
CommentzT railing <HR>
 -
D' escription
=
i

Figure 6-16 Main properties tab for the Account Record source

The main properties of the RecordSource include its archetype and the extended
properties similar to those we saw for the Page. For the Account object they
include:

» Comments: This is text displayed above the RecordSource.
» Comments trailing: This is text displayed after the RecordSource.

» ShowRSAction flag: This is set to false. By default, RecordSources are
displayed with a default interface to scroll through records (first, last, next,
previous), and insert, update, and delete records. Since the Account
information cannot be changed on this page, we set this RecordSource option
to false so that we don't display these buttons.

The remaining step, needed to complete the Home page, is to edit the link
between the initial Startup page (the Login page in this case) and the Home
page. This link is called a “transition” and it, along with the default Startup page,
was created automatically by the New Application Wizard.

Chapter 6. Designing an HTML client application 91

More than a simple HTML link, a transition coordinates navigation between the
pages of an application or between different RecordSources on the same page.
The transition contains the information required to display data on the target form
or page. This information is usually a query that selects records in the target
RecordSource. A user-selected button on the source form or hyperlink on the
source page executes the query.

To edit the transition to the Home page, we click the transition (represented by
the curved arrow to Home) in the Object View of the Studio and select its
Properties as shown in Figure 6-17.

9 Verzata Studio (EJB Edition] - E:\OwR edBook\TradexRepozitory\Tradex_xml

File Edit ‘“erzataLogicServer Application Buld Managers Toole ‘Windows Help

@@ | | %5 & X J @I >I @IE&.I &I%Iﬁal & ale-
= 3 Business Objects

i ol Data Objects m StartupPage
""" ~ogh Query Objects
E-45 Client &pplications

El‘a HTML &pplications
- ReadTradeData
B TRADE X =1
B8 Tradex

EI E StartupPage
f [’\
E Home Delete Page Transition
-y Archetypes

g App
[+ Button

Figure 6-17 Editing transition properties

Wiew Server Page Events

92 Application Development Using the Versata Logic Suite for WebSphere

The property we need to edit on the Startup-Home transition is the Query
property. This determines which Account record will be displayed to the user on
the Home page. Versata makes available all of the attributes and methods of the
Account object, along with a number of system methods, through the query
“expression builder”. This makes it easy to instruct the Home page to display the
Account object for the logged-on user, as shown in Figure 6-18.

L) Page Trangition Properties - T1Home E

Trrsion Quey | HTML Object |

Additional where Clause
uid = Appllser)

EExplessiun Builder

Selection Condition
uid = AppUser]|

Order By Clauze

-|<|<=|= >|>= fl" [|]|<>
Or | &nd | Between | Like | I3 | In [Mull | Mot

+

Parameterized Where Claut ¢4 nrder

Desc

Asc

Double-click to paste
Attributes I Mo Available Parameters | Methods

Applzer)
uid (UserlD) DEUser)
balance [Balance) Date(]
tranzactions [Transactions) DateTime(]
Timel]
CDate(<exprz]

0K | rda | Cancel |

Figure 6-18 Building the query for the home page

Chapter 6. Designing an HTML client application 93

6.3.4 Designing the QuoteBuy page

The next page we build is the QUOTE_BUY page. This allows us to view stocks
and prices, as well as purchase holdings.

The QuoteBuy page uses information from the Account object (the userID at the
top of the form) and the Holding object (a blank grid ready to insert a Holding.)
The Account object will be used as our primary RecordSource, the Holding
object will be a dependent record source. A Versata page will have only one
primary RecordSource, but can have any number of dependent sources. Versata
can automatically coordinate RecordSources, so that once we find the Account
for the user, only that Account's holdings will be displayed.

The QuoteBuy page is started by dragging the Account business object onto the
pallet and using the Page Wizard to choose Page and Record source options
such as its archetype.

For the Account object on the QuoteBuy page, we select a DisplayReadOnly
archetype and select only the UID attribute for display, as shown in Figure 6-19.

94 Application Development Using the Versata Logic Suite for WebSphere

Chooze Dizplay Style for Account Data |

Select an archetype for displaying Account:

Archetype Description =
Display {Scalar) Single row,
DisplayQBF {QBF) Single row in query mode,

alar) Single read-only row,

DisplavUpdatable |{Scalar) Single row,

arid {arid) Multiple read-only rows
displaved as a table. hd

1| | 3

Choosze Attributes to Display

Specify which Attributes are bo be displaved For Account or
accept the system defaulks,

IUsing available space and default archetype, the system will
layout as many Attributes as it can, Howewver, you may specify
the Attributes For display, their ordering, and archetypes other
than the default,

Help |

" System Defaulks * Lser Selection

Avegilable Atkribukes Chosen attributes
|
balance LI
transactions

archetype [v Use System Default
|TextBn>c

indicates not for defaulk layvout,

Help | Cancel | < Back. | Mext = | Finish |

Figure 6-19 Specifying the Account Record source on the QuoteBuy page

Chapter 6. Designing an HTML client application 95

To add other RecordSources to the Page, we can drag the required business
object to the pallet. When dropped onto the page, a Wizard appears.

The first panel of the wizard asks whether the Holding RecordSource will be
dependent to the Account RecordSource, for example, are they coordinated in a
Master/Detail relationship on the page. Since a relationship rule was defined
between the two business objects in the business logic tier, Versata can also use
this relationship to coordinate client interactions, as shown in Figure 6-20.

Choose Data Dependency |

The data displaved for this Record3ource can be
dependent an anaother RecordSource in a master)'detail
relationship or can be made independent.,

Haw will the new RecardSource be related ta the
others on this page?

™ Independent % Dependent

Select Dependent Record3ource

Help | Cancel = Bath Mext = Einish

Figure 6-20 Choosing Account/Holding client coordination

96 Application Development Using the Versata Logic Suite for WebSphere

Figure 6-21 asks for the archetype to be used for Holdings. Here we choose an
UpdateableGrid, which is an HTML table with a variety of built in functions such
as updateable cells, selectable rows and sortable columns.

Choosze Dizplay Style for Holding Data

Select a format For displaying Holding:

GridUpdatable

Malraka Mo data displayed,

Pickarid (Pick) Multiple read-only rows
displaved as a table, with hvperli

Pickiaridrulti (Pick) Mulkiple read-only rows

displaved as a table, with checkk

-

4 | e

Filter and Sort Recaords. ..

Specify Attributes

Help | Cancel < Back hext = Einish

Figure 6-21 Choosing the archetype for Holdings

Chapter 6. Designing an HTML client application 97

Figure 6-22 asks for the attributes from Holding to be displayed. We will display
only the stock Symbol and Quantity, since these are the fields that can be
entered by the user.

Choose Attributes to Display

Specify which Attributes are to be displayed For Holding or
accepk the system defaults,

Using available space and the default archetype, the system will
layout as marny Attributes as it can, However, vou may specify
the Attributes For display, their ordering, and archetypes other

than the default,

i System Defaults * User Selection
Available Abtribubes 7 Chosen Attributes
userlDr ad svmbol
indsx
price
armaounk

** indicates not For default lavout,

Help | Cancel I < Back | Mext = | Finish

Figure 6-22 Choosing displayed attributes for Holding

98 Application Development Using the Versata Logic Suite for WebSphere

The final Wizard panel, Figure 6-23, constructs the “pop-up” form that displays
stock symbols and quotes (from the Quote object). In the Versata system, this is
called a “Pick”. A Pick list pop-up can be specified for any attribute that
participates in a parent-child between the business objects.

In the TradeX model, the Quote object is the parent of Holdings (one-to-many
relationship) and they are joined on the Symbol primary and foreign keys.
Therefore, the Versata-generated Holding.Symbol field on the QuoteBuy page
can automatically present all of the Quotes as choices in a pop-up window. The
Wizard prompts for which pop-ups to construct.

Create Pick Objects for Parent Becords

Holding has at least one parent relationship,

Select From the lisk of possible parent picks:

[Account
Quote

Select Al | Select Mone |

Help | Cancel | < Back | MNext = | Finish |

Figure 6-23 Specifying the pop-up for viewing Quotes

Chapter 6. Designing an HTML client application 99

This completes the QuoteBuy page Wizard. When the Wizard completes, the
Page properties can be edited using the same process we used to edit Main
properties for the Home page. This sets the captions, and initial query mode for

the page.

The Object properties for the Holding RecordSource are set so that only one row
will be shown in the UpdateableGrid, and the Save model will be set to
“Immediate”. This means the new Holding row will be sent as soon as the user
enters it, as shown in Figure 6-24.

"“3 RecordS ource Properties - T2?Holding

[ET] I

Clazz Mame

Cluemy

| amibutes |_HTML Object |

I versata. pds.himl. D ataS ouncePDE j Reqgister... |

Save Mode

Fetched Block Row Count

IImmediate

[dllow Delete
¥ &llow Inzert

[dAllow Update

werzata. pdi. html. 0 ataSourcePDE Properties

=~

|15

b ax. Grd Bow Count
|1—

[~ Prefetch Bow Count

Figure 6-24 Allowing one Holding row to be inserted

The final step for the QuoteBuy page is to create a transition from the Home
Page to the QuoteBuy Page. Like the transition from the Startup Page to the
Home Page, the transition between Home and QuoteBuy uses the query
“uid = AppUser()” — that is, display the Account object where the userID is

the logged in user.

100 Application Development Using the Versata Logic Suite for WebSphere

6.3.5 Creating the Portfolio page

Like the QuoteBuy page, the Portfolio page uses the Account business object as
the primary RecordSource, and it uses the Holding business object as the
dependent RecordSource. Also, like the QuoteBuy page, the transition to the
Portfolio queries the Account with the logged in UserlD.

The primary difference in the Portfolio page is that Holdings are displayed, ten
rows at a time, on a ReadOnly grid. The only action permitted on the grid is to
select a holding and delete it, as shown in Figure 6-25.

“2 RecordSource Properties - T2Holding

L ET | (uemy | AMtributes |
Clazs Mame
|'-.fersata.de.htmI.DataSDurceF‘DH j Reqizster...
Save Mode Fetched Block Row Count
| Imrnediate j |1 &
v Allow Delete fax. Grid Fow Count
[Allow Insert 10
[Allow Update [Pre-tetch Row Count

werzata. pdx. html DataS ourcePDE Properties

Figure 6-25 Properties for Holding Record Source on the Portfolio page

6.3.6 Creating the Profile page

The final page in the application allows the user to update his Profile information.
This simple page uses the Profile business object with UpdateableDisplay
archetype. With the UpdateableDisplay, the controls on the page to “Save” or
“Undo” changes are created automatically.

Like the other pages, the Profile page is completed by editing its properties,
including the Captions and Comments.

Chapter 6. Designing an HTML client application 101

6.4 Completing the application design

With all of the application pages complete, the Presentation Designer pallet looks
like this. The application is complete except for adding the transitions between
the pages, as shown in Figure 6-26.

4 Versata Studio (EJB Edition) - E:\DurRedB ook\TradeXR epository\TradeX._xml

File Edit “erzata Logic Server Application Buld Managers Toolz Windows Help

alSld| s mJJJ_IJgIﬂ_I_IﬂJ!IEI

= a Client Applications

143 HTML Applications

#-[®) ReadTiadeData

#-[@) TRADE_X

2B Tracex

- StatupPage

= Home

; EI--ﬁ T1hccount
@ ToPrefie: =

=7 QuoteBuy

- B Tlccount
= THokding

‘ e TH0ucte

=1 Puoie OuateBuy =

L4 TiPrefle

=7 Portfalia

; EI-ﬁ TlAccount
8 THalding

B Application Designer - TradeX

m StartupPage

Home

Prafile

Figure 6-26 Application pages before transitions

Transitions are added from each page to all other pages, using the “Add
Transition” Wizard. The main property of each transition is the Query used to
enter the page. Like the Home page, each page executed the Query

“uid = AppUser()” for the primary RecordSource.

In Chapter 5, “Rule-based development” on page 57 and Chapter 6, “Designing
an HTML client application” on page 73, we have completed the design of a
complete, end-to-end TradeX application.

Chapter 7, “Deploying the TradeX application” on page 103, demonstrates
deployment of components into the WebSphere application server.

102 Application Development Using the Versata Logic Suite for WebSphere

Deploying the TradeX
application

Deployment is the process of packaging the components of an application so
that the application can be run by users. The Versata Studio provides a graphical
Deployment Manager so that all three tiers of the application — persistence tier,
business logic tier, and user-interface tier — can be deployed with a few simple
steps. Alternatively, Versata provides a command-line interface that can be used
to deploy components independently of the Studio. These are helpful if Versata
components are part of a larger development effort that uses them to “make” files
to build applications.

Behind the scenes, either process sets up the necessary connections, creates
the necessary deployment descriptors, and interacts with WebSphere to install
components into the WebSphere Application Server.

In this chapter we demonstrate the Versata automated deployment process.

© Copyright IBM Corp. 2002. All rights reserved. 103

7.1 Business object deployment

Business object deployment is the process of adding the Java classes built and
compiled for business objects to the repository (.jar) file, and then adding that jar
file to the classpath of the Versata Logic Server running in WebSphere. The
process also creates and installs the WebSphere deployment descriptors for the
business objects created as EJBs. The WebSphere Administrative Console after
deployment of the TradeX business components is shown in Figure 7-1.

¥ WebSphere Advanced Administrative Console
Console View Help

® > rrEaHO

R v
% WiehSphere Administrative Domz «| [EnterpriseBean:Holding
-5 Adminapplication
T General
[—]% jackiel 631 |Advanced| DataSUurcel
-4 JDBC Driver Marme: [Holding =
& Default Server _
-5 YERSATA Current State Running
-- WLS Desired State: Running
Start Time: Sep 21, 2001 11:02:25 At
JMDI Hame Marme: trade/Holding
JAR file: |.SCumpunemsICIassesmade.Jar Browse... |
JAR file in use: |.SComponentsiCIassesﬂrade.Jar
g Repistry Deployment descriptar. trade. Holdinglmpl Edit... |
58 vLSServets
[Remote Servet Redirecto Deployment descriptar in use firade. Holdinglmpl Wigw... |
[3} Trade 2 Server
(- Default DataSource Database access: [Shared =l
[+ TradeSarmple B
& Admin DB Driver Database access in use: Ishared j
) -
A [+ TradaMBMrivar | Ll_l Apply | Reset |

Console Messages

YiZ4/UL 3iU< P LONSOLE Ready.
9724701 3:03 PM : Command "Trade & Server.stop” running ...
9/24/01 3:03 PM : Command "Trade 2 Server.stop” completed successfully.

I

|
Figure 7-1 WebSphere console after TradeX business logic deployment

The deployment Wizard presents a few simple screens to verify the directory
where the business objects *.jar file will be copied and to ask whether the
WebSphere server should be automatically stopped and restarted. (Restarting
the WebSphere server, in Version 3.5, allows the new (.jar) file to be
recognized.)

These simple steps complete the business logic deployment process as shown
in Figure 7-2 and Figure 7-3.

104 Application Development Using the Versata Logic Suite for WebSphere

Werzata Studio [EJB Edition) - E:\DurRedB ook\TradeXR eposzitorp\TradeX. xml

Fle Edf “ersatalogic Server Application Buld Managers Tools ‘windows Help

aleld mlElslr] A] oz &l = alel=)
I

| 4 Fepository Objects

R Bushess Dot Choose Deployment Target |
: . Choose Deployment Target
25 Data Objects [g
Thiz Wwizard will start the deplayment process for the
selected target.

Account
Halding
Profile

Choose deplayment target:
i Registry
w-Ligh Query Objects
#-_g Client &pplications
[¥l-_py Repository Archetypes
Loh Swstem Archetypes
[H-_gp HTML Archetypes Deplop Databaze Tables.
_d Java Archetypes

" Database Server

ploy Buzines: Components and Applications to Verzata
Logic Server

= Clignt Application
Package and Deploy Client Application

Help Cancel = Back Mext = FEmish

Figure 7-2 Beginning to deploy the business logic tier

The wizard is now ready to deploy to the Versata Logic
Server. After deplovment, vou mav use the Yersata
Logic Server Console to manage security on the
deploved objects,

Choose Finish to deploy bo the server indicaked
below.,

Hiost:
jackiela3l

Server!
jackie1631

The Deployment Manager can verify if the server is
running before copying the jar file. Howewver this takes
significant time.

v Stop and Restart Versata Logic Server
' Load only changed beans inta server
¢ Load all beans inko server

Help | Cancel | < Back [Wewxt = I Finish I

Figure 7-3 Completing the business object deployment process

Chapter 7. Deploying the TradeX application 105

7.2 Database deployment

As we explained in Chapter 4, “Architecture of the Versata Logic Server within
WebSphere” on page 39, Versata Data Objects are persistent components that
represent data in a data store. Data Objects are implemented as J2EE entity
EJBs and, where possible, the Versata Transaction Logic Server persists their
data using the Java Transaction Services APl (JTA) available from WebSphere.
In the case of the TradeX application, the business objects are persisted to a
DB2 database.

Database deployment is the process of automatically creating a database
schema to mirror the structure of Versata Data Objects so that they can be
persisted. This is useful if the data model was imported from an external tool
such as Rational Rose or an existing Versata XML repository. It is also useful if
the data model changes after re-engineering from an existing database schema.
In this case, the Deployment Manager can re-synchronize the entity-EJB model
with the original database.

For the TradeX application built in Chapter 5, the data model was not changed
from the original DB2 database schema. (An amount attribute was added to the
Holding object, but this was a non-persistent attribute.) This means that we can
skip the database deployment step when building this initial TradeX application.
However, in the next chapters we will substantially enhance the DB2 model. So
the following steps will be used to alter the DB2 database shipped with the
TradeX application.

7.2.1 Setting up an ODBC Data Source Name (DSN)

To re-engineer, create, or resynchronize a schema, Database Deployment
Wizard communicates with a DBMS using ODBC. (This is different from the
process used to persist data, which uses JDBC through JTA.)

In order to re-engineer or deploy the data model, we first set up an ODBC data

source name (DSN) for the TradeX DB2 database. On Windows NT, this is done
through the NT Control Panel's ODBC Data Source Administrator.

106 Application Development Using the Versata Logic Suite for WebSphere

For the TradeX database, we first add the TradeX System DSN, using the DB2
ODBC Driver and specify the additional DSN settings as shown in Figure 7-4.

BN CLI/ODBC Settings - TRADEX I

Data source name | TRADEX]

Dezcription |
lzer D |-:|I:|2.au:|min
Pazzword I““““““*"

Advanced... | Optimize... | ok I Eancell Helpl

Figure 7-4 Add ODBC system data source name

Within the Versata Studio, select the Manager from the top toolbar and specify a
DB2 database as shown in Figure 7-5.

File Edit ‘Werzata Logic Server Applization Build Manargers Tools ‘Windows Help

alelE] mlelslhl 2] x| ol %[E] alwls = ale]x|

I Repositom Objects

Ea Business Dbieds Choosze Deployment Target
Ea [iata Dbjects

G Account Thiz \Wizard will ztart the deployment process for the
Holding selected target.
Profile
Quote Chooze deployment target:

-y Registry
gl Query Objects
#-—g Client Applications
I:I---_d Repozitory Archetypes
L b System Archetypes

-d HTML Archetypes Deploy Databaze Tables,
_d Java drchetypes

¢ Database Server

= Werzata Logic Server

[eploy Buzsinezs Components and Applications to Yersata
Logic Server

= Client &pplication
Package and Deploy Client Application

Cancel = Bachk | Mext = | Einist

Figure 7-5 Begin deployment to database

Chapter 7. Deploying the TradeX application 107

Next, select the data objects to create (or re-create) in the DBMS and select
whether the system will interact with the Database directly or create a SQL script,
which can be used at a later time as shown in Figure 7-6. Finally, if prompted,
select the System DSN that describes the TradeX database.

Select Data Objects |

all Data Ohijects Data Objects To Deploy

Account
Holding
Profile
Quoke
Regiskry

BN

Help Zancel < Back | [ext = I FEirmist

Figure 7-6 Choose tables to be created in database

7.3 Reviewing or setting the data server

In Chapter 5, “Rule-based development” on page 57, we touched on how to
re-engineer the Versata data model from the TradeX DB2 database. Above, we
showed how to re-synchronize the Versata model to the database in case of
changes. In addition to these topics, there is one other step to complete the
picture of how the Versata Logic Server communicates with data sources. This
step sets a DataServer for our business objects.

108 Application Development Using the Versata Logic Suite for WebSphere

In Versata, a Data Server is a named connection (pointer) that binds one or more
Data Obijects to their persistent data store. You will recall from Chapter 4,
“Architecture of the Versata Logic Server within WebSphere” on page 39, that the
Versata Connector Architecture supports both relational databases (which are
typically supported by WebSphere) and non-relational data sources (which may
not be.) The Data Server abstraction allows a Versata Data Object to be
mapped to its source, regardless of the type of the source.

Data Servers are mapped in the Versata Logic Server Console. The console is a
Java program that can be access through the Studio toolbar or through the
operating system. On NT this is done through the Versata program group ->
Start -> Versata System -> Versata Logic Server Console.

After logging on to the Console, with the default id “sa” (no password), the
DataServers can be viewed under the “Administration” heading as shown in
Figure 7-7.

Logon to the Yersata Logic Server |
Admin login | 53 (8]4
Admin passward | Cancel

Versata Logic Semver | <lncalvlsSeniars

Figure 7-7 Login to the Versata Logic Server console

If business objects have been re-engineered from an existing database, or if the
Database Deployment Manager has been used to re-synchronize the database
schema, a DataServer may have been automatically created. Scroll through the
list of servers to find the database type and name you will be using for the
TradeX application.

Chapter 7. Deploying the TradeX application 109

If the DataServer exists, the default properties such as connection pooling,
timeouts, and other tunable values can be retained. If the DataServer has not
been created, a new server can be specified from the DataServers list in the left
panel of the console as shown in Figure 7-8.

g’%\"elsala Logic Server Console [_ (O] %]

&% gl=] Wolx| |2

=@ VLSServer =1 & DataServer10
@ jackiel 631

E-&Administration (ver. 314) Connection Properties | Data Ohjects | Data Server Login Overtide |
& i Users

mm Roles ‘Data Server Type |DBz-UDEIJdbc j
[y Object Packages

43 Data Servers ‘Data Server Login Ijmcalexa Password..

- DataServer)

+E DataSenver!. Property [value =
a k el onnaction Idle Timeou
ertl Connection ldle Timeout 1800
“E DataServer2 Connection Timeout 1
€ Datagerver3 Database tradex
- DataServerd
External Data Source Mame
-~ DataServers I
- Datagervers In_Tran_lsalation_Level 2
N ock Deferre alse
f DataServer? Lock Deferred fal
- Datasenvers Locking Hint FOR UPDATE =
[DataServerd ‘I LlJ
€ BampDB2 Property Description
- 55Traded
EI-@ Monitor Specifies the maximum time in seconds that anidle (unallacated) connection j
- [lik Performance tan remain in the pool hefore being remaved to free resources. This value must
s User Sessions he a positive integer.

[|

Test Connection |

-

kil o

Figure 7-8 Creating or examining data server properties

110 Application Development Using the Versata Logic Suite for WebSphere

Deployed data objects also appear in the Console. They are organized by
Versata Repository name. Here, the TradeX data objects are assigned to the
Data Server defined for the TradeX DB2 database as shown in Figure 7-9.
(By default, this was sequentially numbered as DataServer10).

Egg\"ersala Logic Server Console

© % @8] (x|« Bl

= @ VLSSener B

i = Account
EI-‘. jackie1631

El & Administration fer. 3114) Ralas Privileges Froperties
i Users

9 Roles

=143 Object Packages
i@ SampDB1

i trade Objects
Iﬂ. trace?
5 braced
[g trades
Ela TradeX

£ Data Objects
IE tﬂ w
IE Holting e .
IE Profile -h-nl'u . -
E Quate nigkle sttribute security
= @y Registy
g Query Objects
[HTML Applications
[#-_g Java Applications
% Data Seters
- Monitor

|1t Performance

-% User Sessions

-

@ Tpe There are no properties defined for Business

]

o

Figure 7-9 Assigning data objects to the TradeX data server

Chapter 7. Deploying the TradeX application

111

7.4 Granting access to TradeX users

112

The Versata Logic Server controls business object security by assigning users to
roles, and granting privileges (read, create, update, and delete) on data or query
objects to those roles.

Users can be authenticated and mapped to roles in a variety of ways. For
instance, any WebSphere-supported user authentication method can be used to
validate users and passwords. Users can be mapped to roles by through
WebSphere mechanisms as well. For simplicity, in the TradeX application, we will
default to Versata's standard security scheme, which is administered through the
Logic Server Console. To test security, we define several users from the
information contained in the “Registry” table of the IBM Trade Database as
shown in Figure 7-10.

Eg’i\"elsala Logic Server Conzole M=1 3

& % 25| o= <] 2=

= YLSServer =]
@ Jackiel 631

=@ Administration (Ver. 314)

EE=]User

ﬁ guest(Guest %I
4 saSystem Administr¥ar)

-8 Uit
- wid:20
L8 i3
I 4
[g Roles
-8l Object Packages
®] Data Servers
=@ Monitor
[k Performance
[2= User Sessions

-

Kil »)

Figure 7-10 Defining TradeX users to the logic server

Application Development Using the Versata Logic Suite for WebSphere

Then the users are assigned to the general role “Public”. Because the security
model of the Trade application is enforced at the application level (by comparing
the userID to the logged on user), we grant all object permissions to the Public

role as shown in Figure 7-11.

Eg’%\'elsala Logic Server Conzole

&% 2] Solx| - 8lE

M|

=@ vLSServer
=@ jackie1631
2L Administration Ver. 314)
=3 Users
- guestiGuest)
Q sa(System Administrator)
i1
% uid20
% uid:a0
L i 40
B3 Roles
SF e
L System Administration
[By Object Packages
] Data Servers
=8 Monitor
- [lil Perfarmance
-% User Sessions

-

-

< Public

Privileges | Usersl Properties'

Applications Business Objacts | System Priviledges |
(Al v
|—(‘ Diata Objects Guery Objects (8 Both |
Ohject Mame |Read |Create |Update \Delele -
Tradex Account v v v v
NTBEANTEL
TradeX.Holding v L' v v
TradeX.HOLDINGBEAMTHL v v v v
Tradex Profile v v v v
TradeX.PROFILEBEANTBL v L' L' ¥
TradeX.Quote v L' v v
TradeX QUOTEBEAMTEL v v v v
Tradex Registry
4 »
Erivilege Broperies | hiethods Attribuies |
GrantAll | Remove Al |

kil

i}

Figure 7-11 Granting permissions to the TradeX role

Chapter 7. Deploying the TradeX application

113

7.5 Client application deployment

Deploying a Versata-created client application installs the application servlet in
the WebSphere servlet engine (Web container), copies the application HTML
pages to the document directory of the desired HTTP server, and creates and
installs the application (.jar) file in the ClassPath of the Presentation Logic Server
EJB (PLSContext.) Deployment of these client components is automated through
the HTML Application Deployment Wizard as shown in Figure 7-12.

E\Fetsala Studio (EJB Edition] - E:\DurRedBook\TradeXRepositop\TradeX_xml
File Edit “erzataLogic Server Application Build Marrqgers Toolz ‘Windows Help

algle| pleole] 2] X el Elal &l = alel=

|3 Repository Dbjects = Application Designer - TRADE_X

Ela Business Objects
_ql Data Objects m StartupPage
g Query Objects

Ela Client Applications
Ea HTML Applications —
: FeadTradeD ata Choose Deplopment Target
TRADE_< This Wi ;

is YWizard will start the deployment process for the
fH StartupPage selected target.

Choose deployment target:

% Profili

—gh Archetypes
® Tradex
“wiriteT raderdata " Database Server

ik Deploy Databaze Tables.

- Java dpplications

- _d Repository Archetypes " Versata Logic Server
Deploy Buginess Components and Applications to Versata

Logic Server

System Archetypes
[+l-gh HTML Archetypes
[Java Archetypes

Package and Deploy Client Application

Help | Cancel | = Back | Next = | Eimist

Figure 7-12 Beginning client application deployment

114 Application Development Using the Versata Logic Suite for WebSphere

The Deployment Wizard provides a series of dialogs that verify installation
directories a shown in Figure 7-13. (The defaults were set during the Logic
Server installation.)

HTML Application Deployment Wizard - Introduction

The HTML Application Deployvment wizard will deploy
the application to the Web Server and the Yersata
Logic Server

Versata Logic Server install Folder:

IE:'l,'-.-'ersataS. 1 EJE

Web Server rook Folder:

IE:'I,IBM HTTF Serverihtdacs

Servlet Folder:

ol L

IE:'l,'-.-'-.-'eI:uSphere'l,.ﬁ.ppServer'l,servlets

Help | Cancel = Barh Mexk = | Finish |

Figure 7-13 Component directories in the Application Deployment Wizard

Chapter 7. Deploying the TradeX application 115

Finally, the Presentation Server within WebSphere is restarted to recognize the
new application as shown in Figure 7-14.

HTHL Application Deployment Wizard - Finizhed

The HTML Application Deployment wizard has Finished
collecting information.

Please press Finish to deploy.

Hask:

jackisl631

Server:
jackiel631

The Deplayment Manager can verify if the server is running

before copying the jar file, Howewver this takes significant
time,

v S d Reskark ta Logic 5
W Owverwrite Files without ¥ Stop and Restart Versata Logic Server

confirmation

Help | Cancel < Back [t =

Figure 7-14 Confirming application deployment

116 Application Development Using the Versata Logic Suite for WebSphere

7.6 Executing deployed applications

After deployment, applications can be started from within the Versata Studio, or
they can be accessed through the URL or the servlet that controls the

application.

The servlet will have the same name as the application, and, by default, be put in
a webapp directory, in a subdirectory reserved for that repository. For instance, in
the TradeX application, in the TradeX repository, the servlet URL is
http://lTocalhost/webapp/TradeX/TradeX as shown in Figure 7-15.

E\Felsala Studio [EJB Edition] - E:\DurBedBook\TradeXRepository\ TradeX_xml

File Edit ‘ersatalogicServer Application Buld Managers Tools Windows Help

slgd| al=[ol] 5| x| @] 2]a] LlalE] = ae|

1= Repository Objects

.é Business Objects
1423 Client Applications
223 HTML Applications
-/ ReadliadeData
-8 TRADE_X
B StartupPage
3 Home
-] QuateBuy
--ﬂ Partfalia
=7 Profile
_d, Archetypes
- Tradex

-] WhiteTradexdata
- Wity

----- —& Java Applications
[]---.é Repository Archetypes
Lah System Archetypes

[#-—gy HTML Archetypes
.d, Java Archetypes

[Application Designer - TRADE_X

m StartupPage

Add Page

Savedpplieation
Save Application As...

Home

Build Application
Frebuild &1
Compile &Il
Execute

B ithaut Campile . k % Portfolio
Application Deployment Wizard

Zaom |
Zoom Out

References
Properties

Figure 7-15 Executing an application from the Versata Studio

Chapter 7. Deploying the TradeX application 117

7.7 Generating business and application logic reports

The Versata Studio can generate reports from its repositories to summarize the
definition of data models, business rules, and application components. In this
way, the Versata Logic Server serves as a dynamic “memory” of an
organization's business processes and the high-level logic that implements them.

Shared with business analysts and new members of the development team, the
reports become instant, and up-to-date documentation, useful for auditing or
regulatory compliance. When used with any third-party source code control
system, the repository can be “differenced” to track system changes over time as
shown in Figure 7-16.

EBusiness Rules Report - E:\DurAedBook\TradeXReposzitory\TradeX. xml

All Data Objects Selected Data Objects
M arne | Account
3 Haolding
Prafile
Quote
Reqistry
kS
<
— Print Data Object Rules——— ~ Frint Attibute Rules————— ~ Beport Dutput
v attributes ¥ Derivation * Window

¥ Felationships | Sterses st £ Printer
¥ Constraints ™ File
[+ *alidation
¥ Events
¥ Presentation
v Indexes
v Froperties P Notes

Print |

Figure 7-16 Specifying a business logic report

In the following chapter we will demonstrate how to enhance the business logic of
TradeX to provide a more real-world application scenario.

118 Application Development Using the Versata Logic Suite for WebSphere

Enhancing TradeX business
logic

As we saw in Chapter 5, “Rule-based development” on page 57, the initial
business logic of the TradeX application is very basic. Buying stock results in a
new Holding, which must be sold in its entirety. A user's account balance is not
checked before a purchase and can be overdrawn. In addition, there is no
provision for commissions or for “personalization” to distinguish between an
active, high balance customer and a potentially less profitable account.

In this chapter we enhance the TradeX application to meet a series of new
business requirements. Changes will be made easily and incrementally, through
new business rules that adjust the functionality of existing business objects.

© Copyright IBM Corp. 2002. All rights reserved. 119

8.1 New requirements

The new requirements are to accomplish the following:

1. Allow blocks of shares to be sold against a Holding. The user's initial
purchase of the shares will still cause a new Holding to be added, but each
transaction against that Holding, including the “buy” transaction will be
recorded. Rules will be added to ensure that a user doesn't sell more shares
than he has in his account. (for example, short selling will not be allowed.)

2. Establish a system of Account types. Account types will be graded by the
cash balance on hand, the size of the portfolio, and the number of trades.

3. Charge commission on each transaction. Apply a variable commission
rate, depending on the type of account, to calculate the commission amount.
As a promotion, newly established accounts (those with less than five trades)
will not be charged commission. “Wholesale accounts” (those with large total
assets) will be charged a lower rate than “Retail accounts”.

4. Limit margin selling. For the purposes of this example, we will assume that
the Securities and Exchange Commission (SEC) frequently changes the rule
controlling margin selling where a user “borrows” money in his account to
cover part of the purchase price. To accommodate the changes, the margin
selling rules must be “parameter driven”, that is their behavior must change
based on outside data that is, in this case, read from a table. In this way,
managers can maintain a table of current SEC regulations and the Versata
rule need not be re-written or re-deployed to enforce the new regulation.
(Parameters to rules can come from a number of sources, including method
calls to external systems, data passed from the client, and so on. In this case,
we illustrate a simple, table driven example.)

8.2 The TradeXv2 repository

A real-life Versata environment typically includes a development and a
production server, so that changes to business logic can be made and tested
without affecting a running application. As development proceeds, the Versata
repository, along with the source code for customized components are versioned
in a source code control system to track the changes.

In our single-user TradeX environment, however, we are working in with a single
server. To make our changes in this Chapter, while preserving the functionality of
the original TradeX application, we will simply “clone” the TradeX business
objects and rule definitions from Chapter 5, “Rule-based development” on

page 57. This can be done by importing the TradeX XML files into our new
TradeXv2 repository.

120 Application Development Using the Versata Logic Suite for WebSphere

As with the basic TradeX logic, to enhance the application we state the business
requirement, and demonstrate the steps needed to implement the requirement in
the Versata Studio.

8.2.1 Requirement 1: Sell partial holdings

The first requirement, to be able to sell partial Holdings, requires a significant
change to our object model. A new Transaction business object must be added
to capture the original buy operation for a holding, as well as the multiple sell
operations against it.

The original Holding object retains attributes such as the index (ID), stock
symbol, price and quantity of the original purchase of the Holding. In addition, we
add new attributes including those to track the number of transactions against a
Holding, the shares remaining in the Holding, and the derived current value of
the Holding. These values can be reported to users viewing their portfolio and
used in the derivation of other object attributes, such as the
Account.AccountType.

A new Transaction object will store the date, quantity, price, and transaction type
for each operation against the Holding. Each Transaction will be related to a
Holding by its HoldingIndx, which is a foreign key to the Holding indx attribute. A
Transaction will be uniquely identified by a combination of its Holdingindex and a
SequenceNumber, which is incremented with each transaction against the
Holding.

The new Data Object, Transaction, is created in the Business Logic Designer by
specifying its name and its attributes as shown in Figure 8-1.
The initial attributes and data types for Transaction are:

» Holdinglndx — long integer (corresponds to Holding.indx autonumber data
type)
» SequenceNumber — long integer

» Price — double (retained from the original Trade model. Versata has a
“currency” data type, but since this model was taken from the original Trade
model, currency is not used in this example)

» Quantity — double (retained from original Trade model)
» Date — Date/Time

» Amount — Double (retained from the original model)

» TransType — Integer.

» Commission — Double

Chapter 8. Enhancing TradeX business logic 121

E‘H’ersata Studio [EJB Edition] - E:A\OurB edB ook\TradeXv2\TradeX¥2 xml

File Edit ‘ersataLogic Sereer Lpplication Buld Managers Tool: ‘Windows Help

a|8|E] slelsls] A % o] 22 &lbE = ale|)

3 Repositry Objects
-3 Business Objects

Mew Data Object...
Add Data Object from #L...
Add Relationship(z] from #kL...

[uote
Registy
g Queny Objects
Eﬂ---_& Client Applications
Eﬂ---_d Fepozitary Archetypes
Lo System Archetypes
-y HTML Archetypes
- Java Archetypes

Figure 8-1 Adding a new data object

At the time the attribute is added basic rules for data validation can be specified.
Data validation defines limitations for an attribute value that will be enforced at
runtime as shown in Figure 8-2. Versata builds in validations based on:

» Condition — this includes anything that can be specified in the Rule builder
such as, for Transaction.Quantity.

Quantity BETWEEN 10 and 10000 /* Don't allow very small or very large trades:

» Value required — prevent nulls for this attribute

» User updates — allow users enter values for this attribute

» Against a list of values (called a Coded Value List). Coded Value Lists are
demonstrated later in this section as we fill out the TransType attribute rules.

122 Application Development Using the Versata Logic Suite for WebSphere

#_Business Rules Designer - Transaction

Attributes I Eelationships.l Eonstraints.l .t'-‘-.c:ticnns.l Ernperties.l

Marne |Déerivation [t/ slidation

Holdinglrdx Required
SequenceMum

Price

Quantty | |
Date Defaul: date()

TransType Default 2

| o

Derivation Validation / Diata Type I F'resenlgtiu:unll Nates.l EHtended.I

Yalidation Type —Yalidation Condition

& Condition Quartity Between 10 AND 100000 =] |

" Codedalues List

Y alidation E ror
IBuanlities miLst be between 10 and 10000

Data Tupe = ¥ alue Required
M umber
Sub T}'DEIDoubIe ‘l ™ Prevent User Updates

Figure 8-2 Adding transaction attributes and validations

With the basic Transaction object defined, next we define the primary and foreign

keys which underlie relationship definitions as shown in Figure 8-3.

The primary key for Transaction (a combination of the HoldingIndx and
SequenceNumber) uniquely identifies the Transaction. The foreign key
(HoldingIndx) refers to the primary key of the Holding object (indx) to link the

Transaction with the Holding.

Chapter 8. Enhancing TradeX business logic

123

The Business Logic Designer has an easy way to specify keys, which may or
may not be propagated to the database (that is, keys can exist only in the
“mid-tier” (EJBs), although performance is improved if they are deployed to the

underlying database as well. This is done during database deployment from the
Versata Studio.)

¥ Business Rules Designer - Transaction

.-’-'«ttr_ibutesl Eelationshipsl LCongztraints | Actions Properties

Index Mame | Key | Unique| lgnore Mulls |ﬂ«ttributes
p | TransHoldFk Holdinglnd=
TranzPE. Primary | Yes Huoldinglnds, Sequencetum
| | 3
Add... [elete Modify. ..

Figure 8-3 Defining transaction primary and foreign keys

124 Application Development Using the Versata Logic Suite for WebSphere

With a foreign key defined for Transaction, we now create the relationship
between Transaction (child) and Holding (parent) as shown in Figure 8-4.

. Business Rules Designer - Transaction

ﬁttr_ibutes. EE|atiDnShi|JSIEnnstraintsll Actinns.l Ernperties.

Relationzhips to Child D ata Objects
Relationships to Parent Data Objects

BA Create Relationship
Related Data Object:

Transaction

" iz a parent of
{% iz a child of
Selected Data Object:

Account

Profile
Guote
Redqisty

Tranzaction

ak. | Cancel

Figure 8-4 Defining the transaction and holding relationship

As we saw in Chapter 5, “Rule-based development” on page 57, part of the
relationship definition is the relationship name (used to create a method that gets
a related object), and referential integrity options as shown in Figure 8-5.

Chapter 8. Enhancing TradeX business logic 125

¥ Business Rules Designer - Transaction

.&ttr_ibutes' Belationshipsl anstraints.l .&ctioﬂs.l Eroperties.

Go to Related |

Fielationzships to Child Data Objects
= Relationzhips to Parent Data Objects
gz [oHolding

Referential Integrity I F'resentationll E:-:tended.l

W Enforce Referential ntegritg
— On Parent Update ———— — On Parent Delete———— — On Child Inzert/Update

¢ Prevent |f Children

' Prevent If Children & Frevent If Mo Farent

" Delete Children

= Update Children = Inzert Parent [f Morne
= Mull Children Foreign Key

— Emor Meszages While Preventing

Update Farent ICan'date index. Has active holding.

Delete Parent IEan'Iete tranzactionz. Haz active holding.

Inzert/Update Child ICan'eate tranzaction. Mo holding.

Child Fole Name IHasTransactions Parent Role Mame IBeIongsToHolding

Figure 8-5 Transaction and holding relationship details

With the relationship defined, we can continue to define the rules required to
implement the rest of our new transactions. These rules effect the Holding and
Transaction object, and, to a lesser extend, the Account object.

1a: Requirement
Distinguish between different types of transactions. Define TransType 1 as “buy”,
TransType 2 as “sell”.

1a: Implementation

Defining what the TransType values represent could simply be an informal
understanding among the development team. Business logic developers could
code accordingly, and client logic developers could translate the “1” and “2”
values to something more meaningful to the user.

126 Application Development Using the Versata Logic Suite for WebSphere

Versata does this automatically with a Versata Coded Value list, which is a table
of values used to validate entries for an attribute and translate them to client
applications. Validating TransType against a Coded Value List will help to
document our logic, prevent errors, and allow us to easily add other transaction
types in the future.

A simple way to implement this is to create another object (ValidTransType) with

two attributes as shown in Figure 8-6:

» storedValue — the actual integer value saved in a Transaction

» displayValue — text (“buy” or “sell”) that will be used to describe it on HTML
pages or other client applications.

The definition of a business object has a property to flag whether it will be used
as a Coded Value List, as seen below.

RVersata Studio (EJB Edition) - E:\OuiRedBook\TradeXv2\T radeXv2. xml

File Edt ‘ersatalogicServer Acplication Buld Managers Tools Windows Help

L = e e A e e e A R

3 Repostory Objecls ¥ Business Rules Designer - ValidTransType
Eﬁ Busingss Objects e e e e e
3 Data Objects Attr_ibutes| Eelalionships| Qonstraints| Actions Erupeltiesl

=@ Aocount
-k Holding
- G MaginLimkt ;
&, Frofile DataAccessl Plesentat\onl Motes
G Quats
G Transaction
8 @ ValidhccType W Lise this Data Object as a Coded Vales List
- ValdTransType
el dsplayalue l}\
W storedValue J
[5-cgb Quen Dbjects Attrbube for Stared Yalue
[-gh Client &pplcations I oradahis
[.d, Repository Archetypes
Lop Svstem Aichetypes
[y HTML drchetypes :
[5 g Java Archetypes fdcplaabie

Ke_l,ls!lndexes.l Ektended.l

Attribute for Displayed Yalue

Figure 8-6 Defining the ValidTransTypes as a coded value list

With the new business object defined, we simply indicate that it is to be used for
validating the Transaction, TransType attribute, as shown in Figure 8-7. To
populate the corresponding database table with the valid values, we can enter
them here. They will pushed to the database the next time we deploy our object
descriptions there (using the Deployment Manager -> Deploy to Database
option.)

Chapter 8. Enhancing TradeX business logic =~ 127

'E Buzinessz Rulez Designer - Transaction

Aftributes | Eelatiunships.l Eanstraintsll .-'-‘-.ctinﬂs.l Emperties.|

M amme |Deriveation [alidation -
Frice If[TraneType = 2/ 5el*’ 1Then Prevent User Update

Cluantity (uantity Bebween 10 AMD 100000
Date Default: date()

Amount Frice * Quantity Frevent User Update

TranzTvpe Defaul: 2 Coded "Yalue [alidT ransT wpe)
Ccni'nmissicln returnCommizzion|amount) Commigzion < 100, Prevent Userﬁ -
4 3

Derivation Walidation / Data Type | F'resentgtiu:unll Nu:utesll E:-:tended.l

Walidation Tppe Coded Y alues Lizt
& Condition |"-.-"a|idTran$Ty|:ue J
Stored Yalue| Display Yalues |
{* Coded Walues List 3 1|Buy
] 2|5ell
| # |

Data Tvpe [y ymber -
Sub Type|Integer 7 [Prevent User Updates

Figure 8-7 Validating transaction types from the coded value list

1b: Requirement
When a new Holding is added, create an initial “buy” transaction.

1b: Implementation

In the initial TradeX implementation, we had an event rule when inserting a

Holding. The rule called a method to debit or credit the Account.balance with the
amount of the Holding.

128 Application Development Using the Versata Logic Suite for WebSphere

In our new implementation, we will replace this with an event that calls an
InsertBuyTrans() method as shown in Example 8-1. This method is added to the
Holding object's implementation (Holdinglmpl.java). The method creates a new
Transaction object and sets the Holdingindx, Price and Quantity from values in
the Holding object that is being inserted. It also sets the Transaction Type to 1
and the Sequence Number to 1.

Example 8-1 New method

public void insertBuyTrans() {
Session s= getSession();
try{
TransactionImpl trans =
(TransactionImpl)TransactionImpl.getNewObject(s, true);
trans.setHoldingIndx(this.getindx());
trans.setPrice(this.getprice());
trans.setQuantity(this.getquantity());
trans.setTransType(1);
//trans.setSequenceNum(1);
trans.save();
}
catch(Exception ex) {
raiseException(ex.getMessage());

}

The transaction system in the Versata Logic Server ensures that this logic is
included in included in the transaction that inserts the Holding, so that Holdings
and Transactions are committed or rolled back together.

1c: Requirement
Inserting a transaction causes the Account.balance to be debited or credited with
the transaction amount.

1c: Implementation

To do this, we can just move the event rule to debit or credit the Account.balance
from the Holding object to the Transaction object as shown in Figure 8-8.

Chapter 8. Enhancing TradeX business logic 129

'E Business Rules Designer - Transaction
.&ttrjbutes.l Eelatinnships.l Constraints i ; En:uperties.l
Mame Description
p |Buy Thiz action debitz the lzer's account balance for buy tranza
Sel Thiz action was credits the User's account balance for zell br
4| | 3
Action Mame |Buy
Ewent Condition
Inzerting AMD TransType = 1./ Bup®/ ﬂ
=
Action (Method Call)
getBelongsToHoldingl). getBelongs T adccount(]. debitfamaount + commission] ﬂ |
A
Deszcription
Thiz action debits the User's account balance far buy transactions. Mavigates to the related ﬂ
Halding to get user id. ﬂ

Figure 8-8 Debiting the account balance in a transaction

1d: Requirement
Each new Transaction for a Holding is assigned a SequenceNumber

incremented by one. (This is similar to the Versata autonumber datatype, but the

numbers are not incremented across the whole set of Transactions, only the
Transaction for that Holding, for example, Holdinglndx 100, SequenceNum 1,
Holdinglndx 100, SequenceNum 2, and so forth.

130 Application Development Using the Versata Logic Suite for WebSphere

1d: Implementation

There are a number of ways to implement this pattern, but, for variety, here we
will combine a rule on the Holding object (to count the number of related
transactions) with a predefine “beforelnsert” event in the Transaction object.

First we add a new Holding attribute TransCount and set it to the Count of
Transactions as shown in Figure 8-9.

'm Business Rules Designer - Holding |

Attributes I Eelatinn&hipsl Eunstraintsl .-’-‘u:tiu:uﬂxl Ernpertie&l

Mame |Derivatinn |‘-.-"a|i|:|ati0n -
uzerlD Required

ind Required, Prevent zer Update

ayrmbol

price Feplicate(U zed0OnHolding [Quote] price) Prevent Uzer Update

quantity Required

mtwntm asTranzactions [Tranzaction]] |eEREtMIE= ANl =G
1

Derivation I Walidation / Data Type | F'resentglinn.l Nntes.l E:-:tenu:led.l

Drerivation Type IEnunt j V¥ Persistent
— Dernvation Rule
Data Object
HasTranzactions [Tranzaction) j

[ualification Expreszion

Figure 8-9 Rule that counts number of transactions for a holding

Next we add a single line of Java code to the Transactionimpl.java file. This line
is inserted in the pre-built Beforelnsert event as shown in Figure 8-10.

Chapter 8. Enhancing TradeX business logic 131

The event model of Versata business objects is designed to simplify business
logic customization and is an alternative to calling new methods from rules. For
instance, our Holding event rule that calls insertBuyTrans() for each new Holding,
could have used these pre-built events instead.

Pre-defined events and listeners are inherited when a business object is created.
Exposed events for data objects include: afterCommit, afterDelete, afterinsert,
afterQuery, afterRollback, afterUpdate, beforeCommit, beforeDelete,
beforelnsert, beforeQuery, beforeResultSetFill, beforeRollback, and
beforeUpdate.

Many developers, especially those coming from a VisualBasic or PowerBuilder
projects, are instantly familiar with this model and prefer it to creating customer
Java methods in business objects.

E Code Editor - Transactionlmpl.java O]]
E|= Companents ITransaclion j Everts Ibe[orelnsert j

public woid beforelnzert(Datalbject cbj, Response response)

#Alrite Event Code below this line
zetSequencelun({getBelongeTololding () . get TransCount () + 1);

}

Figure 8-10 Setting the sequence number inside an event

Remaining transaction rules
The remaining rules to fully derive and validate the Transaction object attributes
are:

» TransType — is defaulted to “2” (Sell).
» Date — is defaulted to the system method date().
» Amount — is calculated as Price * Quantity

» Price — When selling price is retrieved from the Quote object by navigating
the Transaction->Holding relationship and the Holding -> Quote relationship.
(When buying, you will recall, it is set by the insertBuyTrans() method.) The
rule for Price build in the Rule Designer is:

If (TransType = 2 /* Sell */) Then
$value = getBelongsToHolding(). getUsedOnHolding().getprice()
End If

132 Application Development Using the Versata Logic Suite for WebSphere

With these steps, we have nearly completed Requirement 1 — to be able to sell

partial holdings by implementing a new transaction model. We just add one

addition rule to ensure that users can't sell more shares than they have
remaining in a holding as shown in Figure 8-11.

To do this, we add an attribute to Holding called QtyOnHand. We place a
constraint rule on the attribute such that:

QtyOnHand < 0

'm Business Rules Designer - Holding

Attr_ibutesl Belationships Constraints I Actioﬂsl Ernpertiesl

Mame

Type

Condition

el

MNaShartSeling

Reject When

(twOnHand < 0

4 |

 Accept'When

& Reject When

Constraint Mame [NoShortSelling

Condition | FEEEEL

Error Meszage Il:an't zell more shares than in holding. Short selling not permitted.

Errar Attribute I

|

Figure 8-11 Rule that restricts short selling

Chapter 8. Enhancing TradeX business logic

133

To derive the Holding.QtyOnHand we create an attribute, as shown in Figure
8-12, QtySold (defined as the Sum of Transactions where TransType = Sold) and
define the QtyOnHand as:

quantity - QtyS

'm Business Rules Designer - Holding

Altributes I Eelationships | Constraints | Actions| Eropeties |

Hame [Drerivation [+ alidation -~
price Replicate[Uzed0nHolding [Quote]. price] Prevent Uzer Update

quantity Required

TranzCount Count[HazT ranzactions [Tranzachion]] Prevent Uzer Update

QAtyOnHand quantity - 0 ild Prevent Uzer Update

QAtySald Sum[HazTranzactions Prevent Uzer Update |
Current alue [Hot persigted] QwOnHand * Prevent User Update -
] |

D erivation I Walidation / Data Type | F'resentgtic-n-l Notes.l E:-ctended.l

Derivation Type |Formula ;I ¥ Persiztent

— Formula E xpression

quantity - QtuSold ;I

Figure 8-12 Deriving QtyOnHand of a holding

With that, we have completed Requirement #1, the most substantial change we
will be making in the TradeX Version 2 application.

134 Application Development Using the Versata Logic Suite for WebSphere

8.2.2 Requirement 2: Customize rules based on account type

Requirement 2, to establish a system of Account types, is much simpler to
implement, since it doesn't require us to fundamentally alter our data and
processing model.

As with Transaction types, we use a Coded Values List object - ValidAccType with
the following stored and displayed entries:

» 1, New Account

» 2, Retail Account

» 3, Wholesale Account

The business logic about who is assigned what account type is:
» Anyone with less than five transactions is a New Account.

» Anyone with five or more transactions who has less than one hundred
thousand dollars total assets (combined value of their current holding and
their on-hand cash balance is a Retail Account.

» Everyone else is a Wholesale Account.

The rule in the Business Rule Designer looks as shown in Figure 8-13.

Chapter 8. Enhancing TradeX business logic 135

136

_ Business Rules Designer - Account

Attrbutes I Eelatinnships.l Ennstraints.l AC[iDﬂSlI Ernpertiesll

Mame |Desivation |#alidation

uid Required

balatce

tranzactions It [Updating AMND [balahce <> Prevent User Update
Portfolicvalue | [Mok persisted)] Sum[HazHolding Prevent Uzer Update

I [tranzactions < 5] Then f Coded Values ListlY alidtccType),

4 |

Derivation I Walidation / Data Type I Presentgtiu:un.l Nntes.l Er:tended.l

Derivation Type IFormuIa j ¥ Persistent

— Formula Exprezzion

IF[ranzactions < 5 Then ﬂ
$walue = 1.5 Mew docount =7

Elzelf [Portfoliotfalue + balance < 100000.00] Then
$value = 2/ Retal Accout =/

Elze
$walue = 3/ Wholesales Account %/

End If

Figure 8-13 Deriving AccType from total assets and number of transactions

Application Development Using the Versata Logic Suite for WebSphere

8.2.3 Requirement 3: Calculate commissions based on account type

With the Account.AccType in place, it is simple to derive a personalized

commission based on the amount of the transaction and a formula defined in a
simple Java method.

The method, added to the Transaction object is:

public double returnCommission(double amount)
{
double commission;
int accType =
getBelongsToHolding() .getBelongsToAccount().getAccType();
if (accType == 1)
commission = 0;
else if (accType == 3)
commission = .005 * amount;
else
commission = .01 * amount;
return commission;

}

Chapter 8. Enhancing TradeX business logic =~ 137

The formula for Commission simply calls returnCommission(), passing the
amount as shown in Figure 8-14.

'E Business Rules Designer - Transaction [x|

Attributes I Eelationships.l Eonstraints.l f-‘«ctioﬂs.l Ernperties.l

Marne | Derivation [validation -
Frice IF[TranzType = 2/ Sel® |Then Prevent Uszer Update

[uantity [Juantity Between 10 4MD 100000
Date Default; date()

Aot Price * Quantity Prevent Uszer Update

TranzType Default: 2 Coded Values ListlaldT ransT ppe)

Commizzion returnCommizzion{amount) Caom < 100, Prevent User Upjig

I ‘alidation / Data Type | F'resentgtiu:un.l Nntes.l E:-ttended'

Derivation Type IFurmuIa j ¥ Persistent

— Formula Exprezzion

returnCommizzion|amotint) ﬂ

Figure 8-14 Calling a method to return the commission

138 Application Development Using the Versata Logic Suite for WebSphere

8.2.4 Requirement 4: Limit margin selling

Managers can set limits on a running system (no recompilation of rules needed.)

Margin selling refers to whether the user can incur a negative balance in his
account (effectively borrowing funds from the brokerage to make a purchase.)

Margin selling can be easily restricted by a constraint rule on the Account object
that says:

Balance < 0 /* Balance can never go below zero

However, our business requirement is a little more sophisticated than that. The
requirement is:

Margin selling is restricted by a borrowing limit. An account balance can go below
zero, but it can't go below the borrowing limit (MarginLimit). Margin Limits change
frequently so that managers must keep a table of MarginLimits with the
EffectiveDate, the OldLimit, and the NewLimit.

In other words, the MarginLimit rule is:

» Time-drive. Transactions will determine which MarginLimit is in effect at the
time the transaction occurs.

» The rule has no fixed values, instead it looks up the current Margin Trading
cut-offs from a table that can be updated in real-time.

Here is one implementation.

MarginLimits are defined in a new object and a corresponding database table.

The definition is:

» MarginLimitType — Primary key. Allows for “tiers” of limits and ties to the
MarginLimitType in the Account (the relationship between an Account and its
MarginLimit is named UsesMarginLimit)

» EffectiveDate — Date this rule becomes effective
» OldLimit — Maximum overdraft allowed before the effective date

» NewLimit — Maximum overdraft allowed after the effective date
The constraint rule on Account will read:

Reject when balance < getUsesMarginLimit().getEffectMinimum()

Chapter 8. Enhancing TradeX business logic 139

140

The EffectMinimum being retrieved from the MarginLimit object is a
non-persistent attribute, derived at runtime with a little Java method that
compares the EffectiveDate against the transaction date and returns either the
OldLimit or the NewLimit.

The complete sequence of illustrations shows:

1. The Constraint on Account, shown in Figure 8-15.

#_Business Rules Designer - Account
Altrjbutesll Belatinnships. Congtraints] .-’-‘«ctiogsll Ernpertiesll
Mame Type Condition
p |Reshicthdargin Reject When |balance < getl)zeshd arginlirmit]]. getE fiectbdinirmurn(]
4| | 3
Conztraint HMame |Restrictt argin
Condition [balance < getlsest arginLimit{]. getE ffectMinimum() [|
v
 Acceptwhen
% Reject When LI
Ermror beszage IThis purchaze would violate Margin Limits for your account type. Plea
Error Attribute I j

Figure 8-15 A constraint to limit margin selling
The non-persistent attribute in the MarginLimit object is derived from a Java

method, to which we pass the EffectiveDate and the old and new limits as shown
in Figure 8-16.

Application Development Using the Versata Logic Suite for WebSphere

'E Business Rules Designer - MarginLimit

Attibutes I Eelatiunships-l Q:unstraintx-l Actiu:uns-l Eropertiea.l

Mame |Derivation [alidation
Mevabinirmum

Qldtinirmum

EffectDate

EffectMinimum |[Mat Ta] Prevvent User Update
LT upe

|| 3

Drerivation I Yalidation / Data Type I F'resentgtian.l Nates.l E:-:tended.l

Derivation Type IFDrmuIa j [Persistent

— Formula E spreszion

returntd arginLimit[E frectD ate, OldMinirurn, Mewbdinimnum] ;I
i

Figure 8-16 Passing attributes to a date comparison method

Finally, the Java method in the MarginLimitimpl.java file is as follows:

public double returnMarginLimit(VSDate adate, double oldmin, double
newmin) {
if (adate.after(adate))
return newmin;
else
return oldmin;

}

Note: There are many possible implementations for the time-driven,
table-driven rule pattern. This example breaks down the steps into the
smallest increments possible for clarity.

Chapter 8. Enhancing TradeX business logic 141

8.3 Modified client application using new business logic

To demonstrate the new business logic, we now design a client application using
the Versata Presentation Designer demonstrated in Chapter 6, “Designing an
HTML client application” on page 73.

8.3.1 Capability 1: Creating QueryObjects

142

In the TradeXv2 application, we want to show the user a history of his “sell”
transactions. Because the stock symbol isn't part of the Transaction business
object, we must join a Transaction to its Holding to obtain this information. For
this we define a QueryObiject.

When talking about the types of Versata Business Objects in Chapter 4,
“Architecture of the Versata Logic Server within WebSphere” on page 39, we
mention that QueryObjects are similar to the J2EE compound or aggregate entity
bean.

QueryObijects objects are derived from data objects by filtering data from a single
entity-type object or by joining and filtering or deriving data from multiple objects.
They can be thought of as the EJB version of a database “view”.

As with database views, in most cases, QueryObjects can read from, inserted or
updated or deleted. Changes to a QueryObiject are actually performed on the
underlying DataObjects it represents.

Application Development Using the Versata Logic Suite for WebSphere

The first step is to create a new QueryObject and specify the base objects from
which it is derived as shown in Figure 8-17. The join can be based on any
existing relationship.

Choose the Data
Object(s) ko supply
attributes ko the Query
Object,

Choosze Data Objects for the Hew Query Object

Show Data Objects
’V &l " felated
Available Data Cbjects Selected Data Objects
Account HoldinggHolding)
Transackion{Transaction)
MarginLimit
Profile

Quote
Tran

I Select Joing

Yalid

Mote: The following relationship(z] esist amaong the selected data objects. Each data object pair
may have multiple relationships. Choose a relationzhip from the lizt to define a join
condition for the queny object records.

m; Holding-Transaction
b ./ Halding indx=Tranzaction Haldinglnds

Help |

C

Figure 8-17 Defining the data objects to be joined in a QueryObject

Chapter 8. Enhancing TradeX business logic 143

Next we can limit the QueryObject to only the “Sell” transactions as shown in
Figure 8-18.

E Expression Builder x|

Exprezzion

Trangzaction. TransType = 2

] efe]-]>]>-] 0

|]
Or | And Bebwesn Like |z | I Mull Mot

+

Select Aftributes Functions

Sequencetum -
Frice
(luantity
Date
Amount
= TranzT ype J
Buw (1]

Commission

Ok I Unda | Cancel |

Figure 8-18 Restricting a QueryObject with an expression

144 Application Development Using the Versata Logic Suite for WebSphere

A very useful feature of QueryObjects is the ability to compute new attributes at
runtime from any combination of values from the underlying DataObjects. For
instance, when displaying a user's transactions, is it useful to show whether the
transaction was “profitable” — that is whether the amount of the sale of those
shares is more than the amount of their purchase as shown in Figure 8-19.

Choosze Attributes for the Query Object
Select Data Objects
E Expression Builder

Attribute Alias

IGrossF’rofit

—Data Type

Data Type I vl

To add existing attributes &
the query chiect, select a
data object and move
attributes from the Availabl |Transaction.Amount - [Tranzaction. Quantity * [Holding, price |
Artributes lisk box ko the
Selected aktribuke lisk bos,

Formula Expreszion Containing SEL Functions Only

RN N INE
oo (e iz (e [(e i

Computed Attributes) Ex

Select Attributes Functions

uzerlD -
Help | ind=
aymbol
quantity
TransCount
QAtyOrHand
QtySold
<= HOUERY ATTRIBUTES

R | QK I Undo Cancel

Figure 8-19 Computing a new GrossProfit attribute in the query

Chapter 8. Enhancing TradeX business logic 145

Finally, the sort order of the returned ResultSet can be defined as shown in

Figure 8-20.

— Sort Order
Cluery Attibutes

Holding. symbol
Tranzaction. Huantity
Tranzaction. Commizzsion
M etProfit

Holding. uzerlD

I

b

(44

RINIEN

i

Order By Attributes

Tranzaction. Holdingl ndx
Tranzaction. 5 equenceium

Figure 8-20 Defining the QueryObject sort order

Other uses for Query objects

QueryObijects are a generally useful abstraction to separate the underlying
business object model from its client representation. Many Versata designers
base all of their HTML application design on QueryObijects rather than the
underlying DataObjects. (In fact, if we had defined QueryObjects in the Chapter 5
exercise, and based our Client design in Chapter 6 on it, we could have run the
TradeX application with few modifications against our new TradeXv2 design.)

We conclude this chapter by demonstrating the TradeXv2 application, with
additional capabilities of the Versata Presentation Designer.

146

Application Development Using the Versata Logic Suite for WebSphere

8.4 The TradeXv2 application

The TradeXv2 application, in Figure 8-21, is a new version of the Trade Home
Page. The page shows another options for applications built with the Versata
Presentation Designer. In this version of the Home Page, the user's Account
information is displayed on the top of the page, and several “tabs” appear in the
center of the page. The tabs allow the user to toggle through functions such as
updating their profile, viewing their portfolio and viewing the new “Checks Profits”
report, based on the new QueryObject.

J Home - Microsolt Intemet Explorer provided by MSN (3] %]
J File Edit View Favoiter Tools Hep ‘
=k
B < IR A B - B I D
Eack Forwald Stop Fefiesh Home | Search Faworites History Mail Print Real.com
| mess@ hitp:/flacalhostwebappTrade¥2 Tradev? | @B HLinks »

-

_—

A WebSphere/Versata Logic Server Application

Home QuoteBuy Sellshares Misc Functions
UserlD uid:1
Owerview
— Transactions 7
Techrical Portfolinialus 23530.0
Documenlation AccountType Wholesale Account
Benchmal Balance 239004.05
MLType 2
Co ation

Go i Upiats prfl

Web UserlD* [T
Prmitives
Name [first: 362 last: 4364
Setup Email — [ud:1@47.com
Instructions

Address 704 Oak Street

CreditCard [45 6p4-355-331

Current Market Conditions
Dowr Jones hustrial 10,000 (+25) S
Fardaq Composte 4400 (+213) j
‘@ r|— ‘T'II Local infranet
3%

Figure 8-21 TradeXv2 home page

Here we see the report, as shown in Figure 8-22, based on the QueryObject that
joins the Holding object with each Transactions and derives a NetProfit from the
purchase price (Holding object), sales price (Transaction object) and the
commission (Transaction object).

Chapter 8. Enhancing TradeX business logic =~ 147

Hnlne Microsoft Internet Explorer provided by MSN

JF\|E Edt View Favoites Tools Help

|- [8]x]

J Back meavd

. Q0 [

Refresh Home:

a & @

Search Favortes History

E-

Mai

i

Pint Real com

| Akdess |@ it/ Aocalhostfwebapp Tradssiv2 Tradev2

2] 6o ||tk

=

Overnew

Technical
Documentation

Benchmar
Configuration
Go Trade!

Web
DPrimitives

Setup
Instructions

A WebSpherefVersata Logic Server Application

Home

UserlD uidi1
Transactions 7

Portfolicvalue 29690.0
AccountType Wholesale Account
Balance 239004.05
MLType 2

Update Profile | View Portfolio | Check Profits

Profits on Transactions

1s:1
157
287
3s7
129
139

i Te BEEe T B B |
;moe W ora ra e

154

1000
a0.0
0.0
0.0

0.0
.0
200

QuoteBuy SellShares Misc Functions

75.5
a7.2
108
108

0o
325

44

-07.2
-108
-108

[

-75.5

0.0 -

-3.25

44

PR I T AT I

&) Done

Figure 8-22 Home page tab is based on the TransProfit QueryObject

07
| | 1% Local intianet

In addition, on this tab we see the result of many of the new business logic
created with rules:

» The AccountType automatically changes when the transaction count exceeds

five and the balance is greater than $100,000.

» The commission rate for each trade is calculated based on the AccountType
at that point in time, with a special provision for new account (with fewer than
five trades).

When buying or selling shares we can see two other rules. The first is the data
validation rule on Transaction.Quantity that prevents very small or very large sale

as shown in Figure 8-23.

148 Application Development Using the Versata Logic Suite for WebSphere

J SellShares - Microsoft Internet Explorer provided by MSN

=l=ix]
wa\e Edit Yew Favoites Tools Help |ﬁ
5 =
T I A R e R 2 A I
Back. Fornyard Stop Refiesh Home Search Favorites History Mail Fiint Realcom
| Aceress [] Wt Mocathostiwebapp Tradeb2 Tradebn? 7| @to HLmks 2
o
A WebSphere/Versata Logic Server Application
Owerview
Technical
Documentation
Benchmar]
SellShares Home
@ v 10
Go Trade! 2 J
m Microsoft Internet Explorer [x] Return Cancel
ek [}z
Pritritives & Must fransact between 10 and 100000 shaies
Setup
Instructions
Curent Warket Condifions
Dovw Totws Inustrel 1000 (+25)
Haschg Camposite 4400 (+23)
‘a Done

’7 ‘ |_!i: Local intranet

Figure 8-23 Violation of attribution validation rule on Transaction.Quantity
Finally, we see the result when the constraint on Account is violated: the

Account.balance can't drop below the minimum balance, set in real-time by a
manager, for that “tier” of customers.

8.5 Concluding the TradeX extended business logic

In this chapter we demonstrated how the original Trade2 business logic, which

has very simple functionality, can be substantially enhanced with a simple
succession of rule changes.

Next we will show how the business logic layer can be easily integrated with the
existing Trade2 client components shipped from IBM.

Chapter 8. Enhancing TradeX business logic 149

150 Application Development Using the Versata Logic Suite for WebSphere

Integrating the IBM Trade2
client

In this chapter we demonstrate two options for interfacing the IBM-provided
Trade2 client to the Versata Logic Server objects created in Chapter 5,
“Rule-based development” on page 57.

The first option uses the Versata client libraries to access business objects
directly from the Logic Server. The second option uses the remote interfaces for
business objects that have been deployed by Versata as EJBs.

Although we outline both access options, we places special emphasis on the first
method - accessing business objects through the Versata client libraries. This is
because the Versata client libraries provide the basis for other client-side access
techniques, such as those provided by the Versata JSP toolkit. Understanding
the client libraries will give developers many more options for accessing
Versata-automated business objects, beyond the functionality provided by their
standard EJB-interfaces.

© Copyright IBM Corp. 2002. All rights reserved. 151

9.1 Method 1: Using the Versata client libraries

An overview of method one follows.

9.1.1 The TradeAltAccess class from IBM

152

As we reviewed in Chapter 2, “Trade application overview” on page 9, users
access Trade2 through the TradeAppServlet. This servlet calls Java beans and
supporting classes to initiate business functions such as buying and selling
stocks.

Results from a business function is returned to an appropriate Java Server Page
(JSP). In turn, each JSP presents a standard menu of Trade2 action choices.
When the user makes a choice on the page, the action is forwarded back to the
TradeAppServlet.

In the Trade client, the servlet and its supporting Java classes always mediate
between the choice made by the user on a page, and the exact implementation
of the business function. This indirection allows for the multiple modes of
operation.

The primary mode of operation utilizes a VisualAge for Java access bean (the
TradeAccessBean) to provide client-side access to the main Trade session EJB.

Two alternate modes of operation include calling the Trade EJBs without using
access beans and interacting with the Trade database directly through JDBC.
These are implemented in the TradeAltAccess class. TradeAltAccess also
provides a convenient way to implement the Versata alternative access. We
begin there to examine the interaction between the Trade client and the Versata
Logic Server as shown in Figure 9-1.

Application Development Using the Versata Logic Suite for WebSphere

)

Fowtadrs pe

E | 1] 1 ok
g / e
- D.'_' :‘ =

EJB Centainar

Figure 9-1 Processing Trade client requests to Versata business objects

9.1.2 Changes to TradeAltAccess to accommodate Versata

As provided by IBM, the Trade client implements a complete set of Trade
business functions in the TradeJDBC class, which is called from TradeAltAccess.
As the name implies, TradeJDBC implements its business logic by connecting
directly to the Trade database using JDBC.

To add Versata connectivity to TradeAltAccess, we create a new class,
TradeVFC. TradeVFC access its business logic by connecting to the Versata
business objects through the Versata client libraries.

To accommodate the new class in the TradeAltAccess.java, we make the
following changes:

{
trade =
new TradeJDBC(TradeConfig.DS_NAME, TradeConfig.JDBC_UID,
TradeConfig.JDBC_PWD);
}

becomes:

{
trade = new TradeVFC()

}

Chapter 9. Integrating the IBM Trade2 client 153

9.1.3 TradeVFC.java

TradeVFC implements the entire Tradelnterface shown in Figure 9-2.

Method Summary

double buy (java. lang. 3tring userID, Jjava.lang.3tring symbol, double cquantity)

Purchase a stock and create a new holding for the given user.

Qnoselbieck createQuote (java.lang.3tring sywmbol, double price, java.lang.3tring details)
Given a market symbol, price, and detatls, create and return a new Quotechieet

dowble | yetBalance (java. lang. String userID)

Return the user account balance for the spectfied customer

Holdinalblect(]| gt Portfolio {java. lany. String userID)

Return the portfolio of stock holdings for the specified custormer

java.util Hashtable

getProfile (java. lang.3tring userlD)
Feturn the user profile mformation for the specified customer

Qustelbject getQuote [java. lang, 3tring symbol)
Teturn a Quotethiect describing a current quote for the given stock symbel

int

login(java.lang.3tring userlID, java.lang.3tring password)
Atternpt to authenticate and logm a user with the given password

boolean

logout (java.lang.3tring userll)
Logout the given user

java.lang.fezing | yegister (jsva. lang, String userID, java.lang.3tring password,
java.langy.3tring fullname, java.lany.3tring address, java.lang.3tring email,

java.langy.3tring creditcard, double initialBalance, boolean login)
Register a new Trade customer.

veid| removeHewlsers ||

Remove all newly registered users by TradeScenanoServlet (1e.

vaoid

resetRegistry|java. lany.3tring userIl)
Reset the Trade login registry for the specified user

double sell (jawva. lang.3tring userIl, java.lang.3tring symbol, int indx)

Sell a stock and removed the holding for the gven user.

veid|getProfile (java.lang.3tring userID, java.lang.3tring fullName,
java.lany.3tring Address, java.lang.S8tring email, jawva.lang.3tring creditCard)
Tpdate a customers profile mformation with the given profile mnformation

Figure 9-2 Trade interface

Each of the methods is implemented in a similar way:

1. A VSSession with the Versata Logic Server is obtained from a Logic Server
session pool.

2. A new VSQuery is created for the session, specifying the business object to
be accessed in the method.

154 Application Development Using the Versata Logic Suite for WebSphere

3. A new VSResultSet is initialized for the VSQuery from metadata about the
object.

4. For methods that query objects, such as getPortfolio(), a SearchRequest is
constructed from passed parameters. Then the query is executed, returning
the object or sets of objects. Sets of objects are interacted over as VSRows.

5. For operations that update or insert objects, such as buy(), a VSRow in the
VSResultSet is filled with the passed parameters and the row is updated or
inserted.

The following section shows the code for the getPortfolio(), and the buy()
methods. In order to understand the code, here is some background on the
Versata classes and interfaces used.

VSSession

A VSSession object represents a logic session for each login with the Logic
Server. The object constructor accepts parameters such as logic server
instance (name) user login name, and logic password to establish the
connection.

TradeVFC implements a private class, SessionPool, to connect a pool of
VSSessions to the Logic Server. As dictated by the existing Trade client, this
class uses a generic logon and password for the entire pool. Later, the Trade
login() method will be called across this generic connection.

VSQuery

VSQuery is the fundamental Versata client-side data access class. It opens a
channel to retrieve data records from a VLS server and stores the data in a local
instance of a VSResultSet.

A VSQuery is typically constructed on an open session and is passed the
business object name (also called the MetaQuery name) that will be accessed
with the query. The object name and its associated metadata determines the
shape of the result set. For example metadata describes: the number, names,
and data types of the attributes that are returned; the data objects to be included;
which data object is set as the childmost data object and so on. Metadata can
also describe information about the values in each attribute, including whether
there is a default value, whether it is a derived attribute, whether it participates in
optimistic locking, and other properties.

Typically a VSQuery will be passed a SearchRequest which is used by the server
to process the query. The Search Request will include the names and values of
the query parameters being passed and any additional “where” clause needed to
construct the query.

Chapter 9. Integrating the IBM Trade2 client 155

VSResultSet

A VSResultSet provides client-side access to data records returned from a
VSQuery. ResultSets offer a number of performance optimizations.

For instance, objects are fetched from databases in tunable blocks. This allows
the developer to balance the database I/O benefit achieved when fetching fewer
and larger blocks of objects with the increased network traffic that results from a
large block size.

If more rows are retrieved than the ResultSet can display, they are cached in
tunable buffers. Within the buffers, rows can be iterated over using methods such
as findFirst(), getRowAt(), next(), and previous(). Also, within the ResultSet, row
column values can be accessed in any order.

ResultsSets are updateable. The column values for any number of rows in the
set can be updated and held until the entire ResultSet is saved to the Logic
Server. Unsaved changes support an undo() method, which re-sets the original
values in the ResultSet.

ResultSets can be retrieved from Versata QueryObijects as well as DataObjects.
QueryObijects allow multiple objects to be combined and retrieved as a single
structure.

VSRow

A VSRow represents a single data record on a VSResultSet. Columns in the row
can be accessed through a name or index. For performance, row data is
returned by value, however, rows can be re-cast to Versata business objects for
fine-grained manipulation. VSRows support insert() and delete() operations
within the ResultSet. Their metadata (column name, counts and types) can be
queried.

9.1.4 The TradeVFC buy() method

As an example of how the Versata client libraries can be used to insert new
business objects, we walk through the buy() method in TradeVFC.java.

Part 1 - In the first section, the buy() method's signature is defined as shown in
Figure 9-3. Buy() accepts parameters for the userID, symbol and quantity. These
are initially collected by the JSP page or application servlet. Next, a message is
created if the application is set to verbose mode.

156 Application Development Using the Versata Logic Suite for WebSphere

public dowble bup String ueerID), Btting symbol, double quantity
throws TradeEx ception {
if (werhose)

Tradel ogging loghless agel
"TradeV FC tuy - Attempting tos"

+ user]D
+ II, n
+ man ol
+ II, n
+ guantity
+0..0,

i

Figure 9-3 Declaring the buy() method

Part 2 - This section declares the VSSession and VSQuery variables, gets a
session from the pool and creates a VSQuery for the Holding object on the
current session as shown in Figure 9-4. It also creates empty ResultSet for the
VSQuery.

V35 ession session = mll;
VaQuery quety= tull,

try

{
session = gessionP ool getlession);
ety = new ¥ 30wery sesson, "Holdng","", ",
VaResultd et ra= query getlewRe sult3et();

Figure 9-4 Initializing the VSSession, VSQuery and VSResultSet

Part 3 - This section inserts an empty row into the VSResultSet and sets its value
to the passed parameters as shown in Figure 9-5. GetData(), gets the column
object by its name before setting it with the passed value.

VAR ow row = ta.insert]);
trow . getDatal " Uaer D" setdtringusetd D),
row . getDatal "Symbal ") setdring symbol);
tow getDatal "Quantity"). setD oubl el quantity);

Figure 9-5 Setting the values for the new row

Part 4 - This section sends the changed ResultSet to the Logic Server for rules
processing. Then the query is closed. Within the Logic Server, after all rules are
processed, changes will be committed to the database. as shown in Figure 9-6.

Chapter 9. Integrating the IBM Trade2 client 157

158

raupdatelatabource);
query. dosef);

Figure 9-6 Sending updated ResultSet to logic server

Part 5 - This section returns the new Account balance from the logic server. A
new SearchRequest is declared for the Account object and a parameter is
passed with the userID name/value pair. The query is executed and the first row
is returned as shown in Figure 9-7

SeatchRecuest & = new ZearchRecuest();
st.addParam eter] "Account”,"UID" userIDY;
query = new V30 uery session," Account”, g new SearchB equest));

r5= guery.execute();
rowr = rafirst);
if (romr 1= mll)
return row . getData’"B dance) . zetD ouble();

)

Figure 9-7 Returning the new account balance

Part 5 - Finally, errors are caught and handled and the session and the query, if
still open, is closed as shown in Figure 9-8.

catch (Excepticn e) |
fHoreate atradeex ception so that other classes know that this has already
fbe dealt with (error messages ete) and throw it for handling at the appropiate lewvel
TradeEx ceptionWrapper ¢2 =
new TradeEx ceptionVWrapper
g
"trade TradeVFC bust.), etror while creating holding™;
e addhlessage"sanbol " + symbol),
el addhlessage "user " + usetlD);
el setdeverity(P)
ed usertError = false;

the owr e,
} finally {
if (session |= null)
sessionF ool released e sal onsessi o),
if Copreryr = tmall)
uery.close();
}
return ;)

i

Figure 9-8 Handling potential exceptions

Application Development Using the Versata Logic Suite for WebSphere

9.1.5 The TradeVFC getPortfolio() method

The other methods in TradeVFC can be implemented using the same general
approach. Here is the method to get the user's portfolio (a set of all of his
Holdings.)

Part 1 - getPortfolio() is passed the userlD and returns an array of Holding
objects. In addition to initializing a new VSSession, VSQuery and
SearchRequest, a vector is created to hold the rows of data elements as they are
returned as shown in Figure 9-9. (A vector is used because we don't yet know the
number of rows to be returned.)

public HoldingObject[] getPortfoliofB tring weetlD)
throws Rem oteEx ceptiony, TradeEx ception {

Vector v=new ¥ ecton);

SearchFecquest st = new JearchR equest();

at. acddP aram eter"Holding", "Uaet[D ", uzerI DY,
W ahession session = mill;

TaQuery query = ml;

Figure 9-9 Beginning the getPortfolio() method

Part 2 - A session is assigned from the pool, the query is executed and the first
row is returned as shown in Figure 9-10.

try
session = seasionP ool getd essond),

guety = new TAQuery session"Hol ding', st new SearchR equest]));
VEResultd et rs = query executs);
VAR ow tow = ta.fir st]);

Figure 9-10 Retrieving the first row of holdings

Part 3 - Each row in the ResultSet is processed, getting the value of each
element and adding it to the vector as shown in Example 9-1.

Example 9-1 lterating over the ResultSet

while (row != null) {

v.addETement(new HoldingObject (row.getData("UserId").getString(),
row.getData("indx").getInt(),
row.getData("Symbo1").getString(),
row.getData("Price").getDouble(),
row.getData("Quantity").getDouble()));
row = rs.next();

}

Chapter 9. Integrating the IBM Trade2 client 159

Part 4 - Finally, an array of HoldingObjects of the correct size is allocated,
populated and returned as shown in Example 9-2.

Example 9-2 Return the array of HoldingObjects

HoldingObject[] retVal = new HoldingObject[v.size()];
v.copyInto(retVal);
return retVal;

9.2 Method 2: Utilizing EJB interfaces

The alternative to accessing business objects through the Versata client libraries
is to access them through their EJB interfaces.

As we saw in Chapter 5, each business object has a property that instructs the
Versata Studio to deploy an EJB for that object. When deployed as an EJB, the
system constructs the object's Home and Remote Interface.

The Home interface will automatically include methods to create the object and
and find the object by its primary key or by a SearchRequest.

The Remote Interface will initially be empty. The developer should add those
methods that will be used remotely to the Remote Interface file, usually by
copying methods from the business objects generated Java class.

In the Trade application provided by IBM, most business functions are controlled
by a single session EJB - the TradeBean. TradeBean implements each of the
business methods in the Trade EJB remote interface and several EJB lifecycle
methods.

Since the existing application defines the method for each business function, the
Versata business object functions were slightly adapted to match these
functions. For example, TradeBean implements the setProfile() method by
calling an remote interface on the Profile object called updateProfile(). To provide
the same functionality, an updateProfile method was added to the Versata
business object. This method “wraps” other methods automatically provided in
the business object, which set the object's attributes.

160 Application Development Using the Versata Logic Suite for WebSphere

Figure 9-11 shows the business object method as it is implemented in the
Versata Studio.

- =1 E3

Members I j
¥ =]

SRR

* <br»

@RECOMFUTE: This routine forces recalculation of formulaes.
* .

public woid Recomputelerivations()

this. setFormulaValues():
;/END_COMPONENT_RULES} ¥
~#{{EVENT_CODE
~+END_EVENT_CODE} ¢

public woid addlisteners() {
<~ {{EVENT_ADD LISTEHERS

#+END_EVENT_ADD LISTEHERS):

public woid updateProfile{String fullname, String email, String address. Strin
=etFullnane({fullnane):
setEmaili{email):
=zetiddressi{address)
=etCreditcard (creditcard):

=avel)
+
’ I
" | ;Ij
[+ Versata HTML Classes ;I |
M Wrenaba W C Clannnn 1

Figure 9-11 The updateProfile method added

Chapter 9. Integrating the IBM Trade2 client 161

After defining the method in the business objects implementation file, it can then
be included in the Remote Interface created by Versata as shown in Figure 9-12.

B Code Editor - Profile.jaya * _ (O] x]

Members I j

package trade:

|

inport versata. COmmon . *;
inport versata. vls. *;

SE

#% Remote Interface Profile

*% Thiz interface iz for methods that you would like to be
3 publicly available to external clients and servers that
*% gooess this Business Object in the VLS. By default no
3 nethods are externally available. You decide which ones
*% to expose based on functionality of your Business Object.
*% and then copy those method definitions from the conponent
#*%* code into this interface file.

x5

public interface Profile extends wersata. common. Business(Object {

vold updateProfile(String fullname, String email. String address. String creditc

-
4| »

[#- Yerzata Foundation Classes
-- Yersata HTML Classes
Versata VLS Classes
Verzata Common Classes
[Syntax Helpers

Figure 9-12 Adding the business object method to the remote interface
After defining the business object methods required by the TradeBean, and after

copying them to the object's remote interface file, the Trade application can be
run without modification in EJB mode.

162 Application Development Using the Versata Logic Suite for WebSphere

9.3 Alternative for JSP access: Versata JSP Toolkit

Because the Trade client uses servlets and Java beans to access business logic,
the Versata JSP Toolkit was not used in these redbook examples. It does,
however, provide an easy-to-use alternative for developers who need to integrate
Java Server Pages with business objects managed by the Versata Logic Server.
This section provides a description of the Toolkit for developers looking for a
simpler client model than the one provided with the Trade application.

The Versata JSP toolkit encapsulates many Versata client library functions in a
custom JSP Tag Library and supporting Java classes. Downloadable from the
Versata Developer's Web site, the Toolkit is used by customers who want to
access Versata business objects from JSP-based e-commerce applications, from
user-developed JSP pages, or from other content-delivery systems.

The JSP 1.1 specification supported by the Versata JSP Toolkit provides a
number of approaches to retrieving and controlling the dynamic content of pages.
The toolkit supports each of these approaches including:

» Inline Java coding. With the Versata JSP Toolkit, you can access the VLS with
inline Java code embedded within the HTML in a JSP page.

» JavaBeans. With the Versata JSP Toolkit, you can access the VLS from
JavaBeans referenced within JSP pages. JavaBeans offer sophisticated data
control and binding to GUI elements. A default JavaBean, called VLSBean,
comes bundled with the Versata JSP Toolkit, and issued for interacting with
the VLS.

» Custom tags (also known as tag extensions). Custom tag libraries are a
feature of JSP 1.1. Resembling XML tags embedded in the JSP page, they
provide an alternative to writing code in JSP scriptlets in order to invoke
Java-based functionality. The Versata JSP Toolkit provides several custom
tags which:

1. Establish and authenticate VLS connections
2. Provide access to business objects controlled by the VLS
3. Support display and updates of VLS ResultSets

Chapter 9. Integrating the IBM Trade2 client 163

9.3.1 Supported functionality

For connecting from JSPs to the Logic Server, the Toolkit supports:

'S

>

>

>

>

Session persistence across pages
Connection recovery

Result set generation from Where clause, Order By clause, and metaquery
definition (in-line scripting)

Remote method calls (through VLSBean or in-line scripting)
Caching of result sets across pages

Security session creation

Session-level failover through application server clustering
Load balancing across multiple VLSs

In addition, it supports runtime binding between VLS data sources and the GUI
controls on HTML pages through the:

'S

Declarative access to result sets, without a need to access the VSResultSet
class (implemented through Versata custom tags)

Ability to override data queries in order to modify result sets or set up
alternate result sets (implemented through subclassing)

Client caching of result sets to allow user navigation

Navigation through result sets by block and by individual record (implemented
through Versata custom tags)

Display and editing of the following data types: Text, Memo, Integer, Numeric,
Currency, Boolean, Image, and Date/Time

Display and editing of attributes with coded values list rules

Display and editing of grids (grid code must be written within the JSP page)
Inserts

Updates

Deletes

Buffering of inserts, updates, and deletes

Note: This feature is implemented differently than in other Versata System
clients, where by default deletes are not buffered.

Parent-child transitions

164 Application Development Using the Versata Logic Suite for WebSphere

9.3.2 Tag library overview
The tag library included with the Versata JSP Toolkit includes these tags:

» DataConnection tag to communicate with an underlying pool of VLS
connections and pass authentication data across the connection.

» DataSet tag to provide access to business objects residing in the VLS. The
tag iterates over the contents of a query object or data object and allows other
HTML constructs to be contained within it, in order to provide access to
individual fields.

» DataField tag that works in conjunction with the DataSet tag to support
display and updates within the rows of a dataset.

9.4 Conclusion

The Versata Logic Suite offers a number of ways to integrate Versata business
objects with any client technology which permits Java calls. Two variations used
in this Redbook are calls to the Versata client library from the TradeAltAccess
Java class and direct access from the Trade session EJB to the Versata-created
EJBs using their remote interfaces.

In addition, Versata offers a JSP Toolkit to which supports access to business
objects directly from Java Server Pages.

These connectivity options are available for applications which are not
automated by the Versata Presentation Server.

Chapter 9. Integrating the IBM Trade2 client 165

166 Application Development Using the Versata Logic Suite for WebSphere

10

Integrating Versata Logic Suite
with WebSphere Studio
Application Developer

If you wish to enhance or debug the Java code generated by Versata for your
application, it is helpful to use an Integrated Development Environment (IDE) that
will facilitate this process. Perhaps the best IDE to use for this environment is
IBM's WebSphere Studio Application Developer (WSAD).

In this chapter we show you how to import, run, and debug your Versata
application code from WebSphere Studio Application Developer.

© Copyright IBM Corp. 2002. All rights reserved. 167

10.1 Introduction

WebSphere Studio Application Developer is IBM's latest and most advanced
development environment for J2EE applications, and is the follow-on technology
for WebSphere Studio and VisualAge for Java. The new tools provided in
WebSphere Studio Application Developer support end-to-end development,
testing, and deployment of e-business applications. They enable developers to
create and test Servlets, JSPs, and Enterprise Java Beans.

In this chapter we discuss how the Versata Logic Suite can be integrated within
WebSphere Studio Application Developer in order to take advantage of its code
development and testing capabilities. This integration is also particularly useful
when the Versata developed application is extended using WebSphere Studio
Application Developer.

10.1.1 WebSphere Studio Application Developer

WebSphere Studio Application Developer is designed from the ground up to
meet the requirements for all new types of applications. These requirements
include open standards, Java, XML, Web services, testing, varying levels of
integration with other components and ISV products, placability, expandability,
role-based development, increased usability for all users, enhanced team
support, as well as increased speed to market. WebSphere Studio provides
integrated development tools for all e-business development roles, from Web
developers to Java developers to business analysts to architects to enterprise
programmers.

10.1.2 Integrated testing with WebSphere Application Server

WebSphere Studio Application Developer does not just contain a simulated test
environment, but contains an actual single server version of WebSphere
Application Server within the product. This enables the developer to build and
test J2EE applications quickly using an environment that is very similar to the
production WebSphere Application Server. This means that the developer can
test Servlets, JSPs, and Enterprise Java Beans right within the development
environment without having to deploy them to an outside server.

Then, using WebSphere Studio Application Developer's advanced debugging
features, the developers can find and fix problems more quickly and accurately
than they otherwise could. They can also unit test modifications to code without
lengthy recompile and redeployment steps.

168 Application Development Using the Versata Logic Suite for WebSphere

10.2 Versata Logic Server within WSAD

WebSphere Studio Application Developer version 4.0.2 and Versata Logic Suite
version 5.5.1 were used for this exercise. Additional steps are needed for earlier
versions of Versata. Since the process is greatly simplified with Versata 5.5.1, we
recommend that this and later versions be used.

10.2.1 Preparing Versata application for import into WSAD

Before you are ready to import your application into WebSphere Studio
Application Developer, you must properly prepare the application.

Preparing the EAR file with source

In order to run a Versata Application within WebSphere Studio Application
Developer, you must create an EAR file with source code. For a J2EE
application, the EAR file contains all items necessary for the deployment of the
application, including EJB applications (JAR files), Web applications (WAR files)
and deployment descriptors. When a Versata application is deployed normally in
the Versata Logic Suite, the resulting EAR file does not contain source code.
However, in order to use the debugger, within WebSphere Studio Application
Developer, source code is required.

Copying the required files

To enable you to create an EAR file with source code, Versata has provided a
process in the form of an executable batch file. This file, along with some other
necessary files, is included in the resource materials for this document. Before
performing this step, copy these files:

» wsEARCreate.bat
» wsEARTDS.Ist
» wsEARImport.bat

You get these files from the directory where you installed the resource files to the
directory: <Versata Install Folder>/VLS/bin

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 169

Compiling the Versata application in debug mode

Since one of your reasons for importing your application into WebSphere Studio
Application Developer may be to debug the code, it is important that the code be
compiled in debug mode. To accomplish this, you must change one of the
environment variables and then recompile the code within Versata Logic Suite.
To do this, perform the following steps:

1. Open the file <Versata Install Folder>\setVersataEnv.bat in a text editor.
2. Find the entry:
set JAVAC_OPTION=
and change it to:
set JAVAC_OPTION=-g
3. Save and close the file

4. Open Versata Logic Studio and open the repository containing the application
you wish to deploy to WebSphere Studio Application Developer.

5. Select Versata Logic Server->Deploy Transaction Logic from the menu.
6. Follow the prompts to deploy the transaction logic.

7. Highlight and then double-click to open the desired client application, and
select managers->deployment manager from the menu to deploy the
application.

8. Follow the prompts to deploy the client application.

Creating the source EAR file
To create the EAR file containing source code, perform the following steps:

1. Open a Command prompt.
2. Navigate to the Versata Logic Server executable directory by keying:
cd <Versata Install folder>\vIs\bin

where <Versata Install folder> is the name of the folder where you installed
the Versata Logic Studio.

3. Key in the following:

wsEARCreate -repository <repository name> -copysource -repository_dir
<full path to repository>

For example:
wsEARCreate ?repository SampDB1 ?copysource ?repository_dir
d:\Versata\VLS?5.5?WebSphere\Samples\SampDB1

This step will create a file called <repository name>_Deployed.ear (for example,
SampDB1_Deployed.ear) in <Versata Install Folder>\temp.

170 Application Development Using the Versata Logic Suite for WebSphere

10.2.2 Importing applications into WSAD

Once you have prepared the EAR file that contains the source for your
application, you are then ready to begin the process of importing the application
into WebSphere Studio Application Developer.

Creating a classpath variable for the Versata install directory

Since you will be making several references to the Versata Logic Suite install
directory, it is a good idea to set up a classpath variable that refers to this
directory. This will save time in defining class paths, and will make your
application more portable. To set up a Classpath Variable for the Versata Logic
Suite installation directory, do the following, as shown in Figure 10-1:

1. From the menu, select Window->Preferences.

In the hierarchy tree on the left, expand Java and select Classpath Variables.
Click the New button.

Enter VERSATA_ROQOT as the name and click the Folder button.

Navigate to the folder where you installed Versata Logic Suite (Example:
D:\Versata\VLS-5.5-WebSphere), and click OK from the New Variable Entry
panel.

6. You should now see VERSATA_ROOQOT as one of the variables listed. Click OK
from the Preferences panel.

ok~ DN

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 171

B Preferences |

[Warkbench Classpath Yariables
------ Build Order

[#]- Data & clazspath variable can be added to a project's clazs path. It can be uzed ta define the

[Debug location of a JAR file that izn't part of the workspace. The rezerved clazs path wariables
______ Help JRE_LIB. JRE_SRC. JRE_SRCROOT are set interally depending on the JRE setting.
______ Intermet Defined claszpath wariables:

[—:I----.Je!va # DB2_DRIMER_PATH - d Av'ebsphere/zqllibliavasdbiava. zip _I Mew... I

i Clagzpath Wariables # JRE_LIE [reserved)
- Edit..
Code Formatter 5 JRE_SAC [reserved) | e

¥ New Varnable Entry

i Organize Imports
LR efactonng

[#] F'Iug 1 Developrment Fath: ID:NersataNLS-E.E-WebS phere
[+ Prafiling

[Scripts
[
[

Mame: [VERSATA_ROOT

H - Server
i Team
------ “Wieb Browsger

[#--'wieb Tools Ok I Cancel |

- ML

¥ERCES - D:AwSAD Apluginz/org. apache. wercesfwerces. jar -
F XEHEESJAH 0 MSAD.-"pIugms.-"org apache Herces.-":-:erces |ar =

i |

FRestore Defaults | Apply |

QK | Cancel |

Figure 10-1 Classpath variable setup

Importing the Versata Logic Server code

In order to run your application, the Versata Logic Server must be running. Since
the Versata Logic Server will be running within WebSphere Studio Application
Developer, you must import the files needed by the server. This code is found in
<Versata Install Folder>\VLS\lib\visBeans55.ear.

1. Open WebSphere Studio Application Developer from the Start button.
2. From the menu, select File->Import.

3. Select EJB JAR File from the list of options and click the Next button as
shown in Figure 10-2.

172 Application Development Using the Versata Logic Suite for WebSphere

Select
Import an external EAR file into an Enterprize Application project I

Select an impart zource;

Application Client JAR file

S EB IR
[, File: system

fip, FTP

bR HTTR

@Z Prafiling file

ﬁj Server Configuration
uool

5, WAR file

Z Zipfie

4 Back I Hest » I Eirizh Cancel

Figure 10-2 Importing EAR jar file

4. Click the Browse button by the EAR File text box.

5. Navigate to <Versata Install Folder>\VLS\lib\visBeans55.ear and double-click
it, or select open. This will return you to the previous panel and place the full
path to the visBeans55.ear file in the EAR File text box.

6. In the EJB Project box, enter visBeans55_EAR (The name does not matter.
Just select a meaningful one) as shown in Figure 10-3.

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 173

EAR Import

Import an Enterprize Application project from the file Syetem @
EAR File |D:%WersatahL5-5.5w'ebS phereb\ls\ibhwIsB 2anzh. ear j Browse... |

where do vou want the imported resounces to go?

Enterprise Application project name: [v1sE eans55_EAR]

Options:
[~ Owverarite existing resources without warning

£ Back | ﬂext& | Finizh I Cancel

Figure 10-3 Project name input

7. Click the Next button from the EAR Import panel.
8. Click the Next button from the Manifest Class-Path panel.

9. On the EAR Modules panel, select the visBeans55.jar module. Enter
visBeans55 EJB as the New Project Name as shown in Figure 10-4.

174 Application Development Using the Versata Logic Suite for WebSphere

EAR Modules

Enter the new project name that will be created for the imported module file by @
zelecting the second column of the table for edit, d

todulez in EAR | Mew Project Name |
w|zBeanshh.jar vlsBeanshh EJB

< Back et » | Einig_lq | Cancel
by

Figure 10-4 New project name setting

10.Click the Finish button. This step will create the EJB and EAR projects,
import the code, and attempt to compile it. You will see several errors in the
Tasks view, but you should ignore them for the moment.

Setting the build properties for the visBeans55_EJB project

In order to eliminate the compile errors generated by the previous step, it is
necessary to update the java build path of the visBeans55_EJB project. To do so,
perform the following steps, as shown in Figure 10-5:

1. Make sure you are in the J2EE perspective of WebSphere Studio Application
Developer. To open this, select perspective->open->J2EE from the menu.

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 175

Make sure you are in the navigator view by selecting the navigator tab on the
upper left window of the J2EE perspective.

Right-click the visBeans55_EJB project and select properties from the context
menu.

From the properties panel, select java build path.
5. Select the libraries tab and click the Add Variable button.

Enter VERSATA_ROQOT as the Variable Name, and Vis/lib/vISEJB55_g.jar as
the Path Extension. If you like, you can use the Browse buttons to retrieve
these values.

7. Click OK from the Classpath Variable Selection panel.

Repeat steps 5 through 7 above, giving VERSATA_ROOT as the Variable
Name, and VIs/lib/vIsEJB55 .jar as the Path Extension.

9. Click OK from the Properties panel, thusl causing the project to be rebuilt.

B Properties for visBeans55_E.JB

o (1]

- Debugger Source Lookup
- enlin Enhancer Properties
- Beaninfo Path

- Java Build Path

. JRE

- Launcher

- Project References

- Server Preference

- Team

- Waldation

- Zip Creation

Java Build Path

X

(% Source | & Frojects Il Libraries | 1l Order |
JABz and class folders on the build path:

2 WS _PLUGIMDIR flibfejboontaingr.jar - D: AwSAD pluging/co..

2 WS _PLUGINDIR fibdraz.jar - D As'SAD pluging/com.ibm. eto.

2 WwiaS PLUGIMDIR b vaprt.jar - D AWSAD spluging/com.ibm, et

B Classpath Variable Selection

Define a classpath vanable:

X
Wariable Mame: [VERSATA_ROOT Browise.. |

Path E xtenzion: IVISHIinvISEJ BE5_g.jar Browse...

Rezolved Path: D:Merzata LS -5 5w ebs pheredvlzdlib/visEJBEE_qg.jar

ok I Cancel

J SERVERJDE_PLUGINDIR fre/libdtt jar - D:AwSAD Aplugins/co... LCreate Falder... |
2 wiaS PLUGIMDIR Abdcsicpigar - D AwSAD pluging/com.bm.e.. Add Folders. |
3 WaS_PLUGINDIR Aibivisib 35 jar - O AwSaD plugins/com b, . Add JA4Rs. . |

4 wAS_PLUGINDIR/lib/jZee jar - D:AWSAD /plugine/comibm.et.. 44 Eutemal JARs... |

3 WiAS_PLUGINDIR Aibdutils jar - D AWSAD Aplugins/com ibm eto, | [__£dd ¥ariable.
G visBeansh.imported_claszes.jar - /vlsBeanshb_EJB MI

Bemaove |

Browsze. .. |

Figure 10-5 Properties for visBeans55_EJB

176

Application Development Using the Versata Logic Suite for WebSphere

At this point, you should see no more fatal errors in the tasks view. You will see
some warning errors, but you can ignore those.

Importing your Versata application EAR file into WSAD

You are now ready to import the EAR file for your application that you created in
an earlier step. To do this, perform the following steps as shown in Figure 10-6:

1. From the WebSphere Studio Application Developer menu, select
File->Import.

2. Select EAR File from the list of options and click the Next button.

3. Click the Browse button next to the EAR file text box. Then, navigate to
<Versata Install Folder>\temp\<repository name>_Deployed.ear (e.qg.
SampDB1_Deployed.ear) and double-click it, or select open. This will return
to the previous panel and place the full path to the file in the Ear File text box.

4. In the Enterprise Application project name box, enter <repository
name>_EAR. The name doesn't matter. Just select something meaningful.
Then click the Next button.

EAR Import
Import an Enterprise Application project from the file Syztem @

EAR File |D:\Wersatah/L5-5.5WebSpherehTemphS ampDB1_Deployed. ear j Browse...l

where do pou want the imported resounces to go?

Enterprize Application project name: ISamDDE'I_EﬁH

Options:
[Overwiite existing resources without warming

Figure 10-6 EAR import

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 177

5. On the manifest class path panel as shown in Figure 10-7, select the
<repository name>.war file. Then make sure the check box to the right of
<repository name>.jar is checked and click next. This indicates a dependent
relationship between the Web project and the EJB project.

Manifest Class-Path

Select dependent JAR z for each module in the EAR file. Thiz will update the @
Clazs-Path in the Manifest, and the Java build settings of the created projects. |

odule files in EAR: Svallable dependent JAR s

|SamEDE1-'af S— (® 5ampDET jar

Ianifest Clasz-Path:
SampDE1 jar

Finizh I Cancel

b ﬂe:-tt

Figure 10-7 Manifest class path

6. On the EAR modules panel in Figure 10-8, select the <repository names>.jar
module and enter <repository name>_EJB as the new project name. Then
select the <repository name>.war file and enter <repository name>_WEB as
the new project name.

178 Application Development Using the Versata Logic Suite for WebSphere

EAR Modules

Enter the new project name that will be created for the imported module file by E
selecting the second column of the table for edit, d

Modulez in EAR I Mew Project Mame I
SampDB1.jar SampDE1_EJB
SampDB1.war SamplB1_wWER

¢ Back | Hest > | EinisaM I Cancel

Figure 10-8 EAR module import

7. Click the Finish button. This step will create the EJB, Web and EAR projects,
import the code, and attempt to compile it. You will see several new errors in
the Tasks view, but you should ignore them for the moment.

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 179

180

Setting the build properties for the application EJB project
Your Versata EJB application refers to classes that are in the some Versata JAR
files. In order to make your application compile without errors within WebSphere
Studio Application Developer, you must set the class path to point to these
external JAR files.

1.

Make sure you are in the J2EE perspective of WebSphere Studio Application
Developer. To open this perspective, select perspective->open->J2EE from
the menu.

Make sure you are in the navigator view by selecting the navigator tab on the
upper left pane of the J2EE perspective.

Right-click the <repository name>_EJB project and select properties from the
context menu.

4. From the properties panel, select java build path.
5. Select the libraries tab and click the Add Variable button.
6. Enter VERSATA_ROQT as the Variable Name, and Client/lib/vicEJB55_g.jar

as the Path Extension. If you like, you can use the Browse buttons to retrieve
these values.

7. Click OK from the Classpath Variable Selection panel.

8. Repeat this process three more times, each time giving VERSATA_ROOT as

9.

the variable name, and the following as the Path Extension:
a. Client/lib/vicEJB55.jar

b. Vis/lib/vcsEJB55_g.jar

c. Vls/lib/vcsEJB55 jar

Click OK. This action will cause the project to be rebuilt.

The number of compile errors in the Tasks panel will decrease, but you will still
see a number of them. You can continue to ignore them at this point.

Application Development Using the Versata Logic Suite for WebSphere

Setting the build properties for the application Web project

As with the EJB project, your Versata Web application refers to classes that are
in the some Versata JAR files. In order to make your application compile without
errors within WebSphere Studio Application Developer, you must set the class
path to point to these external JAR files.

1. Make sure you are in the J2EE perspective of WebSphere Studio Application
Developer. To open this perspective, select perspective->open->J2EE from
the menu.

2. Make sure you are in the navigator view by selecting the navigator tab on the
upper left window of the J2EE perspective.

3. Right-click the <repository name>_WEB project and select properties from
the context menu.

4. From the properties panel, select java build path.
5. Select the libraries tab and click the add Variable button.

6. Enter VERSATA_ROQT as the Variable Name, and Client/lib/vicEJB55_g.jar
as the Path Extension. If you like, you can use the Browse buttons to retrieve
these values.

7. Click OK from the Classpath Variable Selection panel.

8. Repeat this process three more times, each time giving VERSATA_ROOT as
the variable name, and the following as the Path Extension:

a. Client/lib/vicEJB55.jar
b. Vis/lib/vcsEJB55_g.jar
c. Vls/lib/vcsEJB55 jar

9. Select the Projects tab, and make sure that both the visBeans55_EJB project
and the <repository name>_EJB project are checked.

10.Click OK. This action will cause the project to be rebuilt.

Just to make sure all the projects are rebuilt using the settings you have entered,
select Project->Rebuild All from the menu. This will recompile all the projects in
the workspace.

At this point, you will see some warning errors and possibly some fatal errors in
the tasks view. The only fatal errors you should see will be HTML errors such as
missing start tags. You can ignore these as well as the warning errors. If you still
see fatal errors other than the HTML related ones, go back and review the
previous steps and make sure you have performed them all correctly.

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 181

10.2.3 Configuring the server to test the application

You are now ready to set up the server that will allow you to test your application.
WebSphere Studio Application Developer contains a single server version of
WebSphere Application Server Version 4.x that you can configure and run from
within Application Developer. The steps outlined below will show you how to
configure a server that will run your Versata application.

Creating a server instance and configuration

The first step in setting up a server is to create an instance and configuration.
You do this by performing the following steps as shown in Figure 10-9:

1. Open the Server perspective by selecting
Perspectives->open->other->Server from the Application Developer menu.

2. From the menu, select File->new->0Other->Server->Server Instance and
Configuration and click Next.

3. Enter VLS_Server as both the server name and folder (again, any name will
do). Under Server instance type, expand WebSphere Servers and select
WebSphere v4.0 Test Environment. Leave the template box with the default
value of none and click the Finish button. When a dialog box asks if you want
to create a server project named VLS_Server, click Yes. This action will create
a new server project complete with a server instance and a server
configuration.

182 Application Development Using the Versata Logic Suite for WebSphere

Create a new server instance and configuration
Chooze the properties for the new server

Server name:

Folder;

Server jhstance type:

Template:

Description:

IVLS_S arver

I\-"LS_S erver

= i WwebSphere Servers
% ‘wiehSphere w4.0 Femate Server

o efan ‘wiehSphere »4.0 Test Environment
A Apache Tomeat
.. B¥ TCPAP Maonitoring Server

INone

Runs all J2EE projects directly out of the workspace,

Template:

Description:

Server configuration tppe:

ﬁ “WwebSphere w4 0 Canfiguration

INDne

A zerver configuration for WebSphere w4.0

Cancel

< Back News |[Finish i |

Figure 10-9 New server instance creation

Setting the module visibility
The module visibility of the server must be set to Server. To do this:

1. In the Server Configuration view, expand Server Configurations if necessary
and double-click VLS_Server as shown in Figure 10-10.

Select the General tab.

From the drop-down box labeled Module Visibility, select Server.

Save the changes and close the editor.

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 183

B-lHRE - lodRoy|bladeddd ®d v
ﬁ rEg_ Mavigator -
-1 SampDE1_EAR
: - Name: WLS_5
B 51 SsmpDB1_EJB e VLS Server
E SampDEB1_WEE Module visibility: | APPLICATION j
0 || -1 VLS Server COMPATIBILITY
i -1 viBeansi_EAR S APPLICATION
~ | 128 viBeanshS_EJB ey SR

General]Web | Data source | Ports| Trace | Security EJB

% Server Configuiation X :
L@ Server Instances il S
ﬂ WLS_Server Server Instance | Server Configuration | Status | Server State |

- Server Configurations SPLS_Server &P vLs_Server 3% Stopped The server should be republished

ﬂ YLS_Server

Servers] Processes | Variables | Console | Debug

Figure 10-10 Setting module visibility

Attaching the enterprise application to the server
Now that you have a Server set up, you must tell the server which application it

should run. You do this by performing the following steps as shown in Figure
10-11:

1. In the Server Configuration view, expand Server Configurations if necessary.

2. When you right-click on VLS_Server and select Add Project, you will be
presented with a drop-down box listing the two enterprise application projects
you created earlier. If you followed the suggested naming conventions, they
will be named VLSBeans55_EAR and <Repository Name>_EAR. Go ahead
and add both of these projects to the server configuration by right-clicking
VLS_Server and selecting Add Project-><Project name> from the context
menu.

184 Application Development Using the Versata Logic Suite for WebSphere

-anfiguration b4

EE@ Server Instances
- VLS Server

B- Server Configurations
ol ﬁ w
[t 3
Open
Delete
add Bookmark

AddProject M) @& camppE1 EAR
1o# vlsBeansSS_EAR

% WwiebSphere v4.0 Configuration

Figure 10-11 Attaching to server configuration

Configuring the server instance

The server instance you have just created must have access to all the classes
necessary to run your Versata application. This means that you must set up the
classpath for the server.

Configuring server the server instance classpath by copying

the VLS_Server.wsi file

When you configure the classpath manually as outlined below, the editor updates
an XML file called VLS_Server.wsi. A sample of this file is included with the
resource materials for this document. As an alternative to keying in all the
entries, you could simply import this file into the VLS_Server project, replacing
the existing one. You could then modify the file as needed. This sample file is for
deployment of the SampDB1 repository. If you are deploying a different
repository, you will want to replace all references to SampDB1 with the name of
your project. This file also assumes that you have created a classpath variable
named VERSATA_ROOT pointing to your Versata Install Directory.

Configuring the server instance classpath manually
To manually configure the server instance classpath, complete the following
steps:

1. From the Server Configuration view, expand Server Instances and
double-click VLS_Server. This will open an editor for the VLS_Server
instance.

2. Select the Paths tab. This panel contains two text areas: One labeled
WebSphere specific class path and the other labeled Class Path. In the steps

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 185

below, we will be working with the second box labeled Class Path and the
buttons to the right of it.

3. Using the Add Variable button, add the following entries:
a. Variable name: VERSATA_ROQOT, Path Extension: /Client/lib
b. Variable name: VERSATA_ROOT, Path Extension: /VIs/lib
4. Using the Add Folder button, add the following entries:
a. <Repository Name>_EJB\bin
b. <Repository Name>_WAR\webapplication\WEB-INF\classes
5. Using the Add Variable button, add the following entries:

a. Variable name: VERSATA_ROQOT, Path Extension:
Client/lib/vfcEJB55_g.jar

Variable name: VERSATA_ROQOT, Path Extension: Client/lib/vfcEJB55.jar
Variable name: VERSATA_ROQT, Path Extension: Vis\lib\vIsEJB55_g.jar
Variable name: VERSATA_ROQOT, Path Extension: Vis\lib\vIsEJB55.jar

Variable name: VERSATA_ROOT, Path Extension:
Vis\lib\visBeans55_g.jar

6. Using the Add Variable button, add the DB2 driver path. To do this:
a. Click the Add Variable button.
b. From the Variable Name drop-down box, select DB2_DRIVER_PATH.
c. Leave the Path Extension box empty.
d. Click OK

7. The next step is to add the JAR files in the <WASD Install
Folder>\Applications
Developer\plugins\com.ibm.etools.websphere.runtime\lib directory. To allow
for any application that could possibly be run in this environment, you should
add all of them, but the list below gives the most essential ones that will be
sufficient for most applications. The classpath variable WAS_PLUGINDIR
points to the WAS runtime directory within Application Developer, and is
created automatically for you. To add these JAR files, click the Add Variable
button, selecting WAS_PLUGINDIR as the variable name and the following as
extensions:

® oo T

a. lib/csicpi.jar

b. lib/ejbcontainer.jar
c. lib/http.jar

d. lib/httpsession.jar

186 Application Development Using the Versata Logic Suite for WebSphere

e. lib/ivjejb35.jar
lib/iwsorb.jar

a

lib/iwstools.jar

=g

lib/j2ee.jar

lib/nssrcm.jar

j. lib/ras.jar

k. lib/websphere.jar
I. lib/webcontainer.jar
m. lib/xml4j.jar

8. Add the tools.jar file from the plugin directory com.ibm.etools.server.jdk\lib. To
do this, click the Add Variable button, selecting SERVERJDK_PLUGINDIR
as the Variable Name and lib/tools.jar as the Path Extension.

9. Save your work by clicking Ctrl-s and close the editor window.

10.2.4 Running and debugging the application

Once the application has been installed, and the server configured, you are
ready to actually run and debug your application from within WebSphere Studio
Application Developer.

Starting the server

The first step in running your application is to start the server. To do this, perform
the following steps:

1. From the Server perspective, open the Servers view. By default, this view is
located on the lower left panel. You will have to find its tab to select it.

2. Right-click VLS_Server and select Start from the context menu. Note:
selecting start will allow you to run the application with debug disabled. This is
faster, and is recommended for simply running the application, but if you want
to set breakpoints and debug the application, you should select debug instead
of start.

3. Watch the Console view for the message “... server open for e-business”.

The server is now running both the Versata Logic Server and your client
application.

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 187

Running your HTML application

Now that the server is running, you are ready to run your client HTML application
from within WebSphere Studio Application Developer. To do this, perform the
following steps:

1. Open the J2EE perspective by selecting Perspective->Open->J2EE from the
menu.

2. Open the J2EE view by clicking the J2EE tab.
3. Expand Web Modules and <Repository Name>.war.

4. 4.For each HTML client application you have deployed, you will see a servlet
icon that looks like this:

Figure 10-12 Servlet icon

5. Right-click the icon corresponding to the application you wish to run, and
select Run from Server from the context menu as shown in Figure 10-13. This
will open up a Web browser window within WebSphere Studio Application
Developer that you can use to navigate through the pages of your application.

188 Application Development Using the Versata Logic Suite for WebSphere

FHE S AR ds BB b S nd ddeed B

7 Enterprize Applications

; ﬁE Application Client bModule
EIE? Web Maodules

=145 SampDB 1. vear

s s B I s

- 25 EJB Modules
[:I"-ﬂ Server Configurations
[]---ﬂ Server Instances
[]—--Eﬂ Databases

K i 2l

JZEE ViewJ M avigator

B Outline x

Tasks [2.431 items)

An outline iz nat available

| El | | Dezcription

= B B B B |

4

Amebapp/SamplB1/5ampDB1/PD_Basic_HTMLAmages s qif- Broken Link.
Swebapp/S ampD Bl /SampDB1/PD¥_Baszic_HTML images/tz.gif- Broken Link.
Awebapp/SamplB1/5ampDB1/PDX_Bazic_HTML/images s qif- Broken Link.
Afwebapp/S ampDB1/5ampDE1/PD_B asic_HTMLAimages/BlueRunningtd an. gif-
i 0525E Unknown tag JADEArchetype).

Pt A IR AD | L AmFinm A bbrib b s meem T mems b

o

TasksJ Properties | enlin Conzole

Figure 10-13 Run on Server

SampDB1_WEB Awebdpplication W EE-IMF Aweb. #ml

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 189

190

Important: Because of the way that Versata handles Web applications, you
will not be able to see images displayed on your HTML pages when running
them in this environment. You may also frequently see the message Virtual
Host or Web Application Not Found. However, these problems are only
cosmetic in nature and should not prevent you from following the links on the
page and exercising the application.

Debugging your application

Probably the main reason for importing a Versata Application into WebSphere
Studio Application Developer is to allow you to use its advanced debugging
features to examine the code while it is running. To debug an application:

1. Find the source file of the class you want to debug. Source files for EJB
projects are found in the ejbModule folder in a package named after the
repository. Source files for Web projects are found in the Source folder in a
package named <Repository Name>.<Application Name>.

2. Open the source file in the java editor by double-clicking it from the Navigator
view.

3. Find the place in the code that you would like to debug, and set a breakpoint
at that point. To do this, you simply double-click in the left margin on the line of
code where you want the breakpoint. A colored dot will appear in the margin
area indicating that a breakpoint has been set.

4. Start the server in debug mode. To do this, follow the instructions on starting
the server given above, but specify debug instead of start.

5. Run the application as you normally would. When the code containing the
breakpoint is executed, the Debug View will be displayed in the Server
perspective. From this view, you can step through the code. To fully utilize the

debugging features, however, you should open up the Debug perspective. For
more information on how to use the debugger, consult the WebSphere Studio

Application Developer online documentation.

Application Development Using the Versata Logic Suite for WebSphere

10.3 Importing modified application into Versata

If you modify the application code within WebSphere Studio Application
Developer, you are obviously going to want to incorporate those changes into
your application when it is run from the normal process. This section explains
how to bring the modified application back into Versata.

10.3.1 Exporting the application from WSAD

To export the application from WebSphere Studio Application Developer:
1. Select File-Export from the menu.
2. Select EAR File as the type of export.

3. Specify the EAR project you wish to export (e.g. SampDb1_EAR) and the
destination path and file name (e.g. d:\SampDB1_Modified.ear)

4. Make sure the Export Source Files check box is selected.
5. Click Finish.

10.3.2 Import the application into the repository

The file wsEARImport.bat is provided to allow you to import the file that you
exported from WebSphere Studio Application Developer back into the Versata
repository. Here are the steps to use it:

1. Open a command window.

2. Navigate to the Versata Logic Server executable directory by keying: cd
<Versata Install folder>\vis\bin where <Versata Install folder> is the name of
the folder where you installed the Versata Logic Studio.

3. Key the following: wsEARImport -earfile <input ear file> -repository_dir
<repository directory>

a. Example: wsEarlmport -earfile d:\SampDB1_Modified.ear -repository_dir
d:\Versata\VLS-5.5-WebSphere\Samples\SampDB1

Note: The wsEARImport utility will only import .java files to Versata's
repository.

You can deploy the EAR file that you export from WebSphere Studio
Application Developer directly to WebSphere Application Server by including
the appdeploy.properties and the visdeploy.properties files in the EAR file.

Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer 191

192 Application Development Using the Versata Logic Suite for WebSphere

11

Developing with UML and
rules

The question that usually follows a serious evaluation of Versata is “How can
rule-based automation be used by my existing development teams?” This
question reflects the fact that many organizations already employ a defined
development methodology and any new programming paradigm must fit into that
methodology.

Although business rules can be added to any development scenario, Versata
technology has most frequently been integrated into the Rational Unified Process
(RUP), provided by Rational ® Software.

© Copyright IBM Corp. 2002. All rights reserved. 193

11.1 UML and the Rational Unified Process

The Rational Unified Process (RUP) is a comprehensive software engineering
approach that defines activities and roles throughout the development life-cycle.
It uses the industry standard Universal Modeling Language (UML) to
communicate and document software requirements, architectures and designs.

A variety of tools, from Rational as well as from other vendors, can be used to
model, create, manage and test software using the RUP methodology. To
support the Rational Rose design environment, Versata provides “adapter”
technology which coordinates Rose models with the business logic created in the
Versata Studio.

To support the development process, independent of any tool, Versata provides a
training class, called “UML to Rules”, that shows how existing UML “artifacts”
(designs and other work products) can be extended to cover business rules. The
following sections discuss some possible approaches for developing in Versata
when using RUP.

11.2 RUP phases and iterations

One of the key goals of the Rational Unified Process is iterative software
development, with each system iteration providing a more comprehensive
solution to the business problem

Within each development cycle, there are four defined phases:

» Inception Phase — where core requirements, “actors”, and initial use cases
are defined

» Elaboration Phase — where detailed analysis is completed and a working
prototype is produced

» Construction Phase — where remaining components are developed and
integrated

» Transition Phase — where the software is delivered to end users for validation
and identification of further requirements

11.2.1 Versata and the Inception phase

The purpose of the inception phase is to define the scope of the project. Versata
recommends starting from a Business Perspective, beginning with Business
Processes and Business Policies.

194 Application Development Using the Versata Logic Suite for WebSphere

1. Begin with a process model

Versata explains that a logical starting point in project definition is a Process
Model. Process modeling can uncover (without detail) key business functions
and determine which are candidates for rule-based automation.

Figure 11-1 illustrates processing a customer order with Business Actors who
benefit from process execution and Business Workers who carry out the
processes. Key business processes may be further detailed with Activity
Diagrams, textural Use Cases and State Diagrams.

4’ Rational Rose - SampleDB.md| - [Use Case Diagram: Processes / Processes and Vi -0 i‘
[F3] Eile Edit Yiew Format Browse Report Query Tools Add-Ins Window Help == x|
DESH|'mE/gROBRBRB|(EE %“adm
k =
B8 SampleDB ’; Process Custormer Orders is the end-to-end Business Process (Business Use Case) whichlx
=00 Use Case View impacts on the Customers and Orders package
2-CJ Logical View =)

3 Comman Elements Model The Business Actor that initiates and derives benefit from the process is the Customer
(3 Customers and Orders Model
-7 Assertions

=03 Data

5]

=)

501 Policies A
=3 Processes r
R e A

B

The business warkers (Order Manager etc) cooperate to get the orders processed

&2 Customer/
- @ Legal Representative/
- Order Handler/

- Order Manager/ s m»
& (@ Sales Persan/ /
@ Process Customer Orders

1@ Process Late Payments
B3 Associations

1- (7 Use Cases
8 Package Overview

3, Associations Custornerf Process Custormer Orders
(3 Human Resaurce Model
(3 Inventory Madel / : i
(3 Madel Ovenviews = ;' Sales Person/
[B] Logical View Package View P i L

Process Late Payments Legal Representative/

Crder Manager!

2, Associations -
@-CJ Component Wiew Activity Diagram: Process [EN
[8 Deployment View Customer Orders

-3 Model Properiies
Order Handler!

View the associated Use Cases ﬁ

from a study of the orders process

I o

For Help, press F1] 2

Wiew the Order state diagram resulting T

Figure 11-1 Model for processing a customer order

2. Add activity diagrams

For key processes, an Activity Diagram will summarize the workflow between
Actors. There are two uses of Activity Diagrams. First, they are the basis for
identifying Use Cases, the key unit for project estimation, development, and
testing. Second, activity information can be utilized with process automation
technology such as Versata's Process Logic Designer and Process Logic Engine,
which are add-on's to the Versata Logic Server.

Chapter 11. Developing with UML and rules 195

196

3. State a high-level policy model

A Versata-specific step in the Inception Phase is the development of a “Policy
Model”.

Policies, or high-level system goals, are added to the design of Versata
automated logic because of the declarative nature of rules-based programming.
As we see when implementing the Trade rule for margin selling (described as
“The account balance can't go below the limit set by the SEC”), it is important to
capture these high-level statements in the system design.

When training users on the “UML to Rules” approach, Versata explains how to
use UML to state system Policies independent of process models. This is
important because, as you will recall, rules are enforced independent of any
specific transaction. The margin selling constraint is automatically checked when
selling stock, when transferring funds, or when performing any other transaction
that touches the balance attribute.

In the Elaboration Phase, Policies will be linked to specific “Business Assertions”
(rule-enforceable logic), which will be further elaborated into derivations,
constraints and other specific rule declarations. The design process drills down
from Policies to Business Assertions to Rule as shown in Figure 11-2.

Application Development Using the Versata Logic Suite for WebSphere

4 Rational Rose - SampleDB.mdl - [Use Case Diagram: Policies / Policies View]
@ Eile Edit View Format Browse Report Query Tools Add-Ins Window Help

Si=E
=l=|x|

D2H/bE s KOBRBRB|IE«2ald

5 SampleDB

-3 Use Case View

£-03 Logical View

-3 Common Elements Model

&
ABC
=

These are the business policies (derived from business strategy) which will
determine the Assertions that are to be upheld in the Customers and Orders
application. Policies are imposed on [T via Assertions

]

=03 Customars and Orders Madsl

&[0 Asserions

=3 Data.

=3 Policies

=3 Processes

-F% Processes and Actars View

- & Custamer/
#-() Legal Representative/
@-{§) Order Handler/
I'ﬂ@ Order Manager/
@) Sales Person/
-2 Pracess Customer Orders
B~ Process Late Payments
#-3 Associations

@[3 Use Cases

[Package Overview
-3, Agsociations

-C3 Human Resource Model

-3 Inventary Model

03 Model Overviews

[B) Logical View Package View

= Associations

-7 Companent View

8 Deployment View

(& Model Properiies

View associated

Assertions

[Cno=oos

Confirmed Crders are Subject to
Auclit Contral

View state diagram
defining audit palicy

Qutstanding Performance |s To Be
Recognised

View associated
Assertions

o

View associated
Assertions for all policies

View associated
Assertions

The Autobucks Scheme Must Be
Supported

Custormer Order F’\:‘;gng Must Be
Controlles

View associgted
Assertions

For Help, press F1

Figure 11-2 System policy model the Versata SampleDB example

4. Develop conceptual class diagrams

With high-level policies stated, initial class diagrams may be started. In the
Inception Phase, Class Diagrams represent a simple Conceptual Model of the

object model.

Since class diagrams will be completed during the Elaboration Phase, for Versata
purposes the Conceptual Model can simply sketch object relationships,
eliminating Foreign Keys and other details. Since the conceptual objective is to
simply make system elements clear to Business Users, performance-oriented
oriented designs such de-normalizations are not needed at this time.

5. Identify use cases and business assertions

One output of the Inception Phase is the initial project scope. This can be
determined by identifying Use Cases and key Use Case Assertions.

Chapter 11. Developing with UML and rules 197

198

Use cases

A use case is a sequence of actions a system performs that yields an observable
result of value to a particular actor. The result can be as simple as obtaining the
current balance of the actor's account, or it can be very complex, for instance
buying a holding of stocks for the actor. Use cases are described in text, and
modeled in Use Case Diagrams showing actors, systems, system boundaries,
use cases, and the relationships between these elements.

Figure 11-3 shows the “Create New Order” use case for the Versata SampleDB,
which is shipped with the Versata Studio.

4 Rational Rose - SampleDB.mdl - [Use Case Diagram: Use Cases / 360 Degree]
[T3] Eile Edit Wiew Format Browse Report Query Tools Add-Ins Window Help

(]
=T

DFH =B &g/ 0PRDED|E+|2a 00|

-3 Data -]
=-(3 Policies
T4 Palicies and Asserions View
f£} Policies and Processes View
€3 Policies View
=B Confirmed Orders are Subjec
& Customer Order Placing Musl
& Foolish Customers Will Mot B
O Outstanding Perfarmance Is 1
I The Autabucks Scheme Mus
2 Associafions
Processes
Use Cases
T4 Customers and Orders View
3 NewDiagramb
£} Process View
% Legal Representative
Order Handler
Order Manager
SalesPerson
Cancel Order
Confirm Order
Confirm Order Delivery
Create New Customer
Create New Order
[360 Degres
E Sequence
B AUse Case Description.c
: & usecase (Maintain Custor
. ¥ actor(SalesPerson)

[RIRjER=R-RCR|

-8-6-E-B-6-E-E-E
G000 0w

- & usecase [Confitm Order) =
] 3
2 =

Here we see the use cases, process, actor and assertions associated with the i—
Create New Order use case

View the Activity Diagram which ﬁ

SalesPerson

4]

storyboar ds the main flow of this Use Case

. Process Customer Orders

Q Street Address Cannot Be "1, Elm

Caonfirm Order
<<Exend=> ", /

B et et |

tfrom Processes)

{from Assertions)

Create New Order Autobucks Used Cannot Exceec

Autobucks Earned
\ ¢rom Assertions) 1

Cannot Place Orders for Customers
On Hald
(ftom Assertions)

Outstanding Balance Cannot
Exceed Credit Limit
(from Assertions)

wzpxtphd=>

G

Maintain Customers

| r [

Far Help. press F1

Figure 11-3 Rational Rose use case for a Versata-automated functions

Business assertions

Versata suggests that Use Cases be identified and briefly summarized (but not
elaborated) in the Inception Phase. Versata ties another rule-based UML
extension, called a Business Assertion, to use cases.

Application Development Using the Versata Logic Suite for WebSphere

Business Assertions are the statements of what must occur during the execution
of a Use Case. In some cases, an assertion may translate directly into single rule
such as a constraint that must be checked or a derivation that must be
performed. One such assertion in the extended TRADE application is “Accounts
have the following Types: New, Retail, and Wholesale”.

In other cases, an assertion may require more than one rule be created. A
TRADE example is the rule that says “If the PortfolioValue + the Balance <
100000.00 AND the number of transactions is more than five, then the account
type is Retail”. Since we didn't yet have an attribute for PortfolioValue, this
assertion required two rules to implement. One rule derived the PortfolioValue
and one rule derived the AccountType.

Business Assertions form the basis for rule design and testing. Designing
multiple rules to solve a Business Assertion is the key skill in using Versata rules
technology.

Within a UML modeling tool such as Rational Rose, the specific rule types
(derivations, constraints, etc.) are stereotyped from UML operations (methods.)
This allows a Business Assertion to be detailed into the multiple rules that may
implement it.

6. Determine scope

The models described above are used to determine the initial project scope and
deliver an initial plan and estimate. Versata provides recommendations on the
how this can be expanded into a detailed scope with key Use Cases, Assertions,
and Objects identified.

Ranking the various artifacts allows key models to be expanded in the
Elaboration Phase.

11.2.2 Versata and the Elaboration phase

Rational describes the Elaboration Phase as the most critical of the four phases.
Elaboration de-risks the project by uncovering sufficient details to prove the
architecture, stabilize the data model, and produce a complete, working
prototype.

Because rules-based automation converts detailed specifications into directly
executable components, success in the Elaboration phase is virtually ensures a
successful Versata-based project.

Chapter 11. Developing with UML and rules 199

200

1. Elaborate key use cases

Elaboration begins by identifying key Use Cases through a scoring process. For
the key Use Cases the first step is to populate and normalize the data model.
Because the data model is a fundamental to Versata relationships and other
rules, particular attention should be given to data types and sub-types, referential
integrity requirements and especially data state changes.

2. Analyze interesting state changes

As we have learned, transactional rules are “data-change oriented”. Therefore
Versata recommends modeling key business entities with a State Diagram. State
diagrams uncover dependencies between the attribute values in multiple entities.

For instance, the State Analysis, in Figure 11-4, details the Order entity and
potential order states from the Versata SampleDB repository. Here the creation
of a new changed Order (not “Collect on Delivery”) is dependent on the
Customer.OnHold flag being set to false. This suggests a potential constraint on
the Customer entity that would prevent any that would create the number of
unpaid transactions to increase if the Customer was on hold.

Application Development Using the Versata Logic Suite for WebSphere

B & Rational Rose - SampleDB.mdl - [Statechart Diagram: Order / Order State]
a File Edit Yiew Format Browse Report Query Tools Add-Ins Window Help

=Bl
=181

\D@mmaa\é\k?|5|@@|c:\ac—\m

T ~[E) NenDiagian?
OrdersView

B Customer

@B Customer)ser

=

 Customer. OnHold = False |

Created

-8 Order
-8 Drdeumber
& StalePad

& Usstate

-8 Statedudiable

Q) StatedwaitingP apment
Q) StateConfimed

-8 Statelverdue

% StateShipped

& dmountitems

Auditable

)

Confirmed ‘

entry/ Sendhail) [OrderTotal » Threshold]

/Smp

l%) Freight
Q} OrderTatal
Tax
& <clomula > OrderTotal
% dmountitems
- % fupoBuckslsed
- % SumdutobucksE aned
- % opname

HeeubdEERLE) AUBBERC @

@ theEmplopes [Employee)
5’ thePartReceived [PartReceiy
pust

- customer [Custamer |

- 6‘ iscreatedby [Create Mew Orde

Timeout] Tolerant

Shipped

Fayment Dverdue maiting Payment

entry SetReminder)
entry Send Waming Letter

entryf Setfeminder)
entryf Send Invoice

Timeaut

Timeout{ [Enough]]

In Dispute

entry/ Set Cusytomer.OnHold
entry/ Send Solicitors Letter

- (7 ordeiltems [Orderltem |

7

m

2257 Statestictivity Madel
[RE5E i St

[

B Audtatle
& Completed
3 Created
L@ Purned

| o
|
H

4

Log F‘sZmant C\m'

Complated

“ o

Fuige

For Help, press F1

;Startm (3 Diliy o0 | WM\croso‘..l CHP Des... | AT&TG\H.l [l tnbox - .

Inbax - Microsoft Outlook
' |

[EFICFos0. 0

Vicrasa

Figure 11-4 State diagram for an order entity

3. Utilize sequence diagrams

Fuged

S
[G T

BN f Bealol 1339

To complete the design process for this constraint, the modeler would define a

Business Assertion “preventOrderOnHold”. This Business Assertion is reflected
in step 10 and 11 of the Use Case Sequence Diagram as shown in Figure 11-5.
These map the Business Assertion directly to the two Versata rules that enforce
it: one to determine the number of unpaid orders, and the second to enforce the

constraint.

Chapter 11. Developing with UML and rules

201

X

. SalesPerson : Customer New : Order New : Referenced : SalesPerson :
——— Orderltem Part Employee
1: Insert()
2: Tie()
3: Pick()
4: Update() Il g
5: *Insert() U
6: Pick() w
7: Update() 1]
8: Commit() ﬂ

9: balanceExceeded|()

10: preventOrderlfOnHold()

Create New Order

11: preventOrderlfOnHold() sequence View

e 1
12: AutoBucksExceeded()

14: Commit()

13: Commit()

Figure 11-5 Steps 10 and 11 map the business assertion to two rules

With the two rules identified to satisfy the Business Assertions, they are easily
defined in the Versata Studio as shown in Figure 11-6 and Figure 11-7.

202 Application Development Using the Versata Logic Suite for WebSphere

#_Business Rules Designer - CUSTOMERS

Attributes] Belationships-l Eonstraints-l Actioﬂs-l Eroperties.l

MHarme |Derivation |\-"a|ic|ation

Street Default; '

City

ZIF

Phata

MurmOrdersPaid |CountfhazOrders [ORDERST) WHERE Frevent Uzer Update

(CountlhazOrders [ORDERS] WHERE

A

Derivation] Walidation / Data Type I F'resentgtinn.l NDtE:S-I E:-ctended-l

D erivation Type |I:.:.unt ;l W Persistent

— Dervation Rule
Data Object
|hasOrders [ORDERS] =]

CQualification E =preszion

OrderPaid = false ;I I

Figure 11-6 First rule to enforce business assertion derives unpaid order

Chapter 11. Developing with UML and rules

203

',m Business Rules Designer - CUSTOMERS I

.&ctioﬂs.l Eroperties.l

.-'httr_ibutes.l Eelationships.

Marme Type Condition

AutoBucksExceedec | Feject When | SumdutoBucksUsed > SumdutoBucksE amed
BalanceEwxceeded |Reject'wWhen |ActBalance > CreditLimit

Exceededtd axLimit | Accept When |CreditLimit <= b asCreditLimit or
PreventDeletesl f0Onk | Reject WwWhen [deleting and :old. 1:0nHold = true]

UnlikelyStreet Reject ‘When |izCurrentEvent[CUSTOMER_wWarning'] = falze AMD S

Congtraint Mame IF'reventDrderl fOnHald

Condition [{MumOrdersUnpaid » old. MurndrdersUnpaid ;I

and lz0nHold = true) _I

/* Hate: Thiz will allowe a prepaid order to be entered andor
zhipped, even if customer iz ztill on hold. ey waluble during a

& Reject WwWhen backrupcy proceeding against a custorner. =/ =l

 Accept When

Error Message ICustDmer iz currently on hold, so new orders are rejected

Error Attribute I LI

Figure 11-7 Second rule constrains transactions which violate the state

4. Detailed class diagrams

Using the Conceptual Model as input (updated as Use Case design unfolds), the
Data Model can be elaborated as Class Diagrams. The complete data model
may include additional classes for building many to many relationships,
introducing new attributes to derive values or for performance, and provisions for
inheritance and Object-Relational mapping. Versata best-practice guidelines
include many recommendations for conceptual and physical data modeling.

5. Transfer business logic to the Versata Studio

In most cases, the detailed data model can be transferred to the Versata Studio
from the modeling tool. This can be done through adapter technology provided
by Versata, or by pushing the data model to a prototype relational database,
where it can be introspected by the Versata Studio. (The introspection process
was how the Trade application was begun.)

204 Application Development Using the Versata Logic Suite for WebSphere

Note: The Versata Best Practice guide Re- Engineering Between Rational
Rose and Versata Logic Studio, provides details on moving object models
from Rational Rose to Versata and re-synchronizing with Rose when Versata
models changes.

Rules can then be created based on Business Assertions and Requirement
Interaction Diagrams.

6. Prototype the user case model using Versata (if desired)
The final proof that a Use Case clearly understood is a working prototype. As we
have seen, the Versata Presentation designer can be used to create a user
interface from business objects.

If a simple Use Case Model is needed, a quick Versata application can be build
for each Use Case. During this phase, page layout need not be refined - the
focus is on basic flow, attributes and semantics.

Versata recommends that the “User Experience” be extracted from activity
diagrams. Within Rational Rose, forms can be associated with data classes
using input form stereotype. When defining the Versata application, the form
stereotype will be used as the application page data source.

Note: Versata is developing a more direct linkage between Rational Rose
forms and the Versata Presentation Designer.

11.2.3 Versata and the Construction phase

There are typically two tasks that fall-outside of Versata automation —
connectivity to legacy systems or third-party applications, and connectivity to
non-Versata client-tiers. The two tasks will require the majority of the custom
development and integration when using Versata-automated business logic.

Custom connectivity

Connectivity to legacy systems, including CICS, MQSeries, and any other
system with a documented API is supported through the Versata Connector layer
outlined in Chapter 4. Recall that the Versata Connector architecture is a
generalized access framework for accessing relational databases (by leveraging
WebSphere Services) and non-relational sources leveraging other technologies
such as IBM's Common Connector Framework (which is evolving into the
standard JCA.)

Chapter 11. Developing with UML and rules 205

The connection type for a Versata business object is specified in the Versata
Studio as part of the object's properties. Figure 11-8 illustrates, that the Customer
object will persist its data, not to a database, but to an MQSeries queue.

“J. Business Hules Designer - CUSTOMERS I

.-’-'-.ttl_ibutesl Eelationshipsl Eonstraintsl Aictions Eropertiesl

Data.-’-‘-.c:ceSSI Presentation.l Notes-l Coded ¥ alues List-l Ke_l,ls.-"lnde:-:es-l Extended

—#DA Connectaor
500
= Custam IMQEuStDmerXDA _I
[enter az Package Claszname]
Lock Made [0 spplicable Atributes =]
— SuperClazz
I ame IEurpHeu&eEHtHuIESDataniect
— Deplopment
[~ Deploy Attibute Security Data
[+ Deploy as an EJE Entity Beare

Figure 11-8 Connecting to a custom connector class

Building custom Versata connectors for business objects is outside the scope of
this redbook. The reason for mentioning connectors here is that connector
development may be scoped and planned for as part of the overall software
engineering process.

The complexity of a connector will vary depending on the actual system to be
integrated. from simple calls to CICS or IMS transactions to get data, to a
generalized interface to push a variety of dynamic messages to several
MQSeries queues.

206 Application Development Using the Versata Logic Suite for WebSphere

Detailed Use Cases and Data Models will reveal how specific or generalized the
connector must be, as well as its inputs and returns. Using these designs, a
prototype implementation can be developed during the Elaboration Phase or left
to the Construction Phase. If left to the Construction Phase, the initial prototype
can be executed against a simpler data store (such as a relational database) and
re-directed to the permanent connector using the Versata Studio.

Connectivity to non-Versata client-tiers

The final area of construction and integration is connecting Versata Business
Logic to a non-Versata client-tier. This is the process we observed in Chapter 9,
when we connected the existing TRADE client JSP pages and servlets to the
Versata Logic Server. We mention it again here to understand its sequence in the
development process.

Using the RUP process, basic GUI prototypes are often produced Inception
Phase to gain user buy-in. As IBM explains in the User-to-Business pattern, such
prototypes usually contain a view of static contents (for example HTML pages)
and an interaction controller built into the HTML code that provides basic
navigational functions to fulfill the tasks of a GUI prototype. There is typically no
business logic or model layer.

During the Elaboration Phase, the client application flow can be extracted from
the activity diagrams. HTML page elements can be extracted from data classes.
When using Rational Rose, this can be done using the same input form
stereotype that is used to produce Versata-constructed applications.

With a well-elaborated model, business logic development within the Versata
Studio and presentation-logic development in other tools can proceed in parallel.

When linking to a non-Versata client to Versata business logic during the
prototype phase, it may be sufficient to replace the static HTML controller logic
from the early prototype with Versata-provided JSP tags and beans from the
Versata JSP toolkit. These tags and beans enable JSP pages to execute
dynamic business object queries or pass data to Versata Logic Server for further
processing.

If a more sophisticated architecture is being prototyped, such as the TRADE
Model-View-Controller example, an interaction controller function for each use
case will be need to be created. This is usually done with a servlet, and
supporting Java classes.

As we saw when porting the TRADE Client, typically a controller function will
connect to the Versata Logic Server using the Versata Client Library, submit a
query, insert or update command, and pass the results to the appropriate JSP for
display or further processing.

Chapter 11. Developing with UML and rules 207

Interaction diagrams and class diagrams provide the client-tier developer with
details on the object names and attributes available through the Versata Client
Library.

Note: Although we consider only HTML-based clients in this Self-Service
pattern, any component capable of calling the Versata client libraries or EJB
interfaces can access rule-based logic. For instance, the IBM Redbook Web
Services Wizardry with WebSphere Studio Application Developer
(SG24-6292) shows how to use the Versata Logic Server, Versata's XML
interface and Versata's WebServices toolkit with new capabilities in
WebSphere Studio Application Developer. Its WebService scenario shows
how to use Versata rules to automate sophisticated B2B logic that is wrapped
with a client proxy using the WebService Description Language (WSDL).

11.2.4 Versata and the Transition phase

The Transition Phase turns the constructed and integrated system to the user
community for acceptance testing.

The marriage of UML and Rules should assist in gaining user acceptance, or
when modifying the system when the implementation falls short of the users'
expectations.

First, the UML Policy and Business Assertion and Rule extensions proposed by
Versata enable traceability directly from the intended goal of the system to its
rule-automated implementation.

Next, UML Rules provide a common language that bridges the gap between
business analysts and developers. Analysts view rules as a business language;
Developers view them as an implementation language.

Additionally, the rule-based repository provides its own level of detailed
documentation. Detailed reports of all business and application objects and logic
are available from the directly from the Versata Studio. These reports are
guaranteed to be up-to-date since their XML-definitions were used to
automatically create the system.

Finally, changes to business logic can typically be made with high-level changes
to rules. Changed rules are inserted into the system, immediately
re-synchronized with exiting rules and immediately re-integrated with existing
Versata-created components. Upon redeployment, the system is automatically
re-optimized for the new business logic.

208 Application Development Using the Versata Logic Suite for WebSphere

11.3 Conclusion: Rule-based design and development

Most Versata users report that the biggest payback in rule-based development is
not obtained in the first iteration of the system, but in subsequent iterations and
maintenance. As we've seen in this chapter, this reflects the relatively high
percentage of time that must be dedicated to analysis and design at the
beginning of any project. Using RUP, this is in the critical Elaboration Phase.

However, logic automation greatly reduces construction, testing, and subsequent
iterations by making careful design and specification directly executable as the
business logic tier of WebSphere applications.

Chapter 11. Developing with UML and rules 209

210 Application Development Using the Versata Logic Suite for WebSphere

12

A Versata Case Study:
American Management
Systems

In the competitive enterprise software arena of Enterprise Resource Planning
(ERP), AMS has specialized for the past 25 years in understanding the needs
driving the purchasing, revenue, and administrative operations for over 250
customers across state and local government as well as in higher academic
institutions. In a move by state and local government (just as in almost all other
industries) to bring key internal and external processes online such as vendor
self-service and procurement, AMS is moving to update its ADVANTAGE Suite of
Administrative Solutions to the next generation based on a thin-client, Java 2
Enterprise Edition (J2EE) model.

As they migrate this application from a client/server COBOL-based system to a
distributed Web-based and Java-based model, AMS also has to ensure that its
solution can meet the following design objectives such as:

» Ensure that performance meets enterprise requirements

» Provide the application flexibility to alter functionality based on changing
business requirements

» Protect its existing customer base by providing richer baseline functionality
and enhancing the user interface and overall experience of the application

© Copyright IBM Corp. 2002. All rights reserved. 211

In addition to these objectives, there is a substantial need to lower
implementation costs. According to Dan Keene, Vice President of State and
Local Solutions at AMS, the supply of the advanced technology skills in state and
local governments to build and maintain applications can often be limited. Keene
notes, "There is huge overhead required to maintain Web and distributed
applications that many people don't factor into their acquisition of technology."

Finally, ERP application requirements are fairly sophisticated, unique, and
continually changing within each organization. They typically involve complex
business logic that drives the end-to-end procurement process such as workflow
and routing, collaborative buying, and vendor self-service.

212 Application Development Using the Versata Logic Suite for WebSphere

12.1 The technical decision process

For a solutions provider like AMS, making a "bet-your-business" technology
decision is not a task to be underestimated. In a decision that involved the CTO's
office, the Head of Product Engineering, and the General Manager of the
ADVANTAGE Line of Business, Keene states that there were several critical
business requirements that influenced the technology direction for AMS. These
included:

» Reducing AMS' cost of development, which meant reducing actual
development and training time and leveraging the domain experience of
existing staff to implement new, Java and Web-based solutions

» Reducing product time-to-market to stay ahead of the competition

» Relying on a strong partnership with best-of-breed technology providers who
understand AMS customer requirements such as flexibility, customization,
and performance

Unlike other ERP solutions where the vendor's business logic, or rules and
processes, are uniformly implemented in all organizations who purchase the
product, the AMS design philosophy required that their solution could conform to
the unique business practices of a particular institution. The ADVANTAGE Suite
of Administrative Solutions Version 3.0 also required that:

» Business requirements could be defined and configured by business analysts
so that changes could be made without needing advanced technology
specialists

» Moving to a Web-based solution would not create huge overhead to support
the application

» Enterprise level scalability and performance supporting complex,
data-intensive transactions could be met

Based on these requirements, AMS knew they needed to take a declarative
business logic approach to get that level of flexibility and abstraction from the
underlying technology infrastructure. AMS initially attempted to build their own
development, rules-based framework to automate and host the ADVANTAGE
application. They quickly eliminated this option due to its high cost. Keene
estimates that it would have taken twelve months to build the framework alone;
this timeframe didn't include the 16 to 18 months required for building the
application itself. Simply, Keene stated, "AMS would not get to market quickly
enough to be competitive and to meet our customer demands."

Chapter 12. A Versata Case Study: American Management Systems 213

12.2 The Versata decision

After looking at several development solutions, the Versata Logic Server was
chosen as the best option. Not only did Versata address the enterprise-level
software requirements of an ERP solution, they offered a viable partnership that
suited AMS' requirements for their next major release. According to Keene, "Due
to the nature of our application, the relationship between AMS and Versata called
for more than the standard acquisition of technology. Versata's engineering team
met with us to collaborate on performance benchmarking and feature
enhancements. Ultimately, this relationship is what closed the deal and gave us
the assurance to move forward with such an important decision."

In addition to the previously mentioned requirements, the ADVANTAGE
application had specific criteria in the area of performance, scalability,
transaction management, and architecture. Because AMS has a wide range of
customers, the ADVANTAGE application needed to scale both vertically within
the application as well as horizontally across multiple application servers. For
example, a typical configuration for the ADVANTAGE application is one with
3,000 signed on users and 800 concurrent users. Through a series of
benchmarks and performance milestones, Versata met these requirements.

Finally, AMS required an open, standards-based J2EE-compliant architecture
that initially supported IBM WebSphere, with the potential for supporting other
application servers in the future. Supporting IBM WebSphere, Versata ensured
that AMS could meet its customers' requirements. AMS was also looking for a
partner to take on the responsibility for supporting the application server in order
to avoid costly application rewrites. Using Versata enabled AMS to avoid the
common pitfalls in J2EE such as upgrading from a J2EE 1.2 compatible
application server to a J2EE 1.3 compatible release. Often, a new version of the
Enterprise JavaBeans (EJB) specification is different from the previous version;
therefore firms often must budget for recoding and retesting their EJBs.

214 Application Development Using the Versata Logic Suite for WebSphere

12.3 The project

Based on meeting the key design criteria, AMS officially approved the use of the
Versata Logic Server for the ADVANTAGE 3.0 project, and as of January 2000,
the Versata Logic Server became the declarative business logic solution for
automating the business logic development and management in the application
server infrastructure of AMS' state and government practice.

12.3.1 The team

The initial AMS development team was comprised of 120 developers for the first
three months and 60 developers for the remainder of the project. Thirty percent
were Java and Object-Oriented developers. Seventy percent were developers
with PowerBuilder or COBOL backgrounds. Until attending class, few team
members had experience with declarative business logic, let alone the Versata
Logic Server. According to Mike Titmus, CTO and Vice President of AMS, "The
development staff new to Java was able to come up to speed using Versata in
three to four weeks and were completely proficient in three to four months."

Included on the team were several technical architects focused on both
infrastructure using the Versata Logic Server and the IBM WebSphere
Application Server, as well as integration issues with the core application.
Originally, AMS also had a team of user interface (Ul) experts. But with the level
of automation Versata provided for the application, AMS quickly narrowed this
down to one Ul expert and a business analyst that would gather the key
requirements needed to drive the user experience.

Chapter 12. A Versata Case Study: American Management Systems 215

12.3.2 The application

216

With over 3.7 million lines of code comprising the existing COBOL-based
ADVANTAGE application, AMS wasn't under-estimating the vendor commitment
that they required for supporting the project.

Table 12-1 ADVANTAGE application statistics

Item Statistics

Tables 1200

Data Objects 833

Query Objects 117

Forms or Pages 849

Coded Value Lists 273

Business Logic Statements 12,000 (replaces 3.7 million lines of code)

Possibly one of the largest enterprise IBM WebSphere applications in existence,
let alone enterprise Java applications in existence, the ADVANTAGE
application's complexity is best illustrated by:

» The type of information it processes
» The type of transactions it manages
» The overall scale of the application

For example, a transaction in the ADVANTAGE Solution requires processing a
very large set of data to complete a transaction. Like a physical paper file that
stores volumes of information, one particular document may require information
stored in multiple tables. Much like TurboTax where data is stored and held each
time you enter and exit the system, the ADVANTAGE application has a multi-step
validation process where information is stored in multiple tables. Any user action
could result in updating data in 10 tables, or in some cases 250 tables. During
one of the performance tests with Versata, AMS tested a complex, online update
involving more than 750 rules.

Additionally, because of the nature of procurement, the ADVANTAGE application
has significant integration requirements with other key back-end systems found
in state and local government. These systems include mainframe data on
0S/390 as well as with XML exchanges needed to integrate with key partner
systems.

Application Development Using the Versata Logic Suite for WebSphere

According to Keene, without a declarative approach to automate the business
logic and user interface, building this application by hand would have been a
daunting task. Keene estimated that the Versata Logic Server automated over 85
to 90 percent of the business logic and 98 to 99 percent of user interface. Most of
the hand-coded components relate to the architectural decisions, batch
processing, and other common modules across the application.

12.3.3 A specific look at performance

For an institution to entrust its business operations to the ADVANTAGE solution,
AMS needed a vendor with reliable technology and a commitment to
performance.

Table 12-2 ADVANTAGE performance statistics

Item Statistics

Signed on Users 3000

Concurrent Users 800
Response Time 2.8 seconds

With a call for a heavy investment in performance analysis and tuning, AMS
needed to work shoulder-to-shoulder with a partner to meet these requirements.
The enterprise requirements for the ADVANTAGE solution called for:

» Supporting 3,000 signed on users
» 800 concurrent users

» 2.8 second response time for small and medium sites

Transaction loads vary from client to client. According to Titmus, "Because
performance and throughput for each client varies, the application load must
scale both vertically throughout the application and horizontally across multiple
application servers. For example, a medium size client might have 7,500
transactions in an online, 8 hour day and a smaller size client might have a much
smaller number of transactions over that same period. The application must be
flexible to support these different requirements." Additionally, the transactions
themselves are diverse and complex. One transaction may consist of hundreds
of inserts, updates, and deletes to the underlying relational database.

Chapter 12. A Versata Case Study: American Management Systems 217

AMS and Versata managed this demand by conducting a series of benchmarks
to ensure that specific milestones were being met. In fact, AMS recently tested
their application at the IBM Test Center to certify these measurements. The
characteristics of the benchmarks included the number of pages accessed, the
response time, and the number of screens for both small and medium sites.

Due to the nature of our application, the relationship between AMS and
Versata called for more than the standard acquisition of technology. Versata's
engineering team met with us to collaborate on performance benchmarking
and feature enhancements. Ultimately, this relationship is what closed the
deal and gave us the assurance to move forward with such an important
decision.

218 Application Development Using the Versata Logic Suite for WebSphere

12.3.4 System architecture

The diagram in Figure 12-1 depicts the ADVANTAGE system architecture with
IBM's WebSphere as the application server foundation for distributed, enterprise
computing offering services such as data caching, load balancing, session
management, connection pooling, and failover.

Business s 22 Repontimg & Aslyiis FPublishing & Farets |
Intelligence ig:
Portal AF: sheliigd Dimibmiun| Extrect, Transfurm & LualJ|
n SO Data Mart/
ADYANTAGE Y BINISER A il Warzhows
Paortal Data Objects E %
8 dl
‘g Home Page 5 Query Ohbjects ? §
= £3
F g,
i L Common App Services zE
w Navigator w g :
e =] 7 O E Cperational
N b= Document Engine, lc. = RD'EMS
3 Work Spaces 3
= @ Global Services -
g Business 1] | -
8 Functions 5= il 2| el ML
g User g E] I% E: 'E g 'E g =
2 sty as} B &3 glag pd
© Customization = g £ & | BE 2=
omonemee e =
= T = E E | B E i o Extemal
Integration with il E| | B _?l:- EC Systerce
Other Portals A BE =l 12
TBM WiehSphere Application Seever
External ---
Bervices

Figure 12-1 ADVANTAGE system architecture

The Versata Logic Server's Transaction Logic layer provides the application
definition and transaction services required by the ADVANTAGE application as
well as the global services such as security, workflow, and alerts. AMS estimates
that 85 to 90 percent of the specific business logic is automated by the Versata
Logic Server.

Chapter 12. A Versata Case Study: American Management Systems 219

220

The User Interface level is automated by the Versata Presentation Engine, which
incorporates the frames or archetypes to support specific business functions.
With 849 pages, AMS needed a template-based approach as it would have been
too cumbersome to layout each specific page. Using an iterative design
approach allowed them to review design with business analysts earlier in the
cycle and support continuous change. The distinct advantage of automation is
that the system implementers can change aspects of the application, and the Ul
automatically reflects these changes. This layer provides the key navigation,
business functions, and user customization needed by the ADVANTAGE portal.
AMS estimates that 98-99 percent of this functionality is automated by the
Versata Logic Server. Furthermore, using a thin-client model that separated the
interface from the business logic allowed the business logic to be re-used across
multiple user interfaces such as Java, HTML and XML.

One of the key benefits of the Versata Logic Server that AMS passes on to its
clients is the ability to easily customize and configure methods in the
ADVANTAGE application. AMS includes an ADVANTAGE Studio modeled from
the Versata Logic Server so that users can:

» Redefine data model and business logic
» Create and modify business objects

» Declaratively specify business logic at an business level as opposed to at the
hand-written Java code level

» Store all application information in a standards-based XML repository so that
it can be easily shared across the application and across teams.

Application Development Using the Versata Logic Suite for WebSphere

12.3.5 The schedule

While AMS calculated that Versata saved them 12 months in building their own
logic-based development platform, there was still the difficult task of working with
the very complex ADVANTAGE application, which called for enterprise-capable
design and development procedures.

Table 12-3 ADVANTAGE schedule

Date Tasks
October 1999 Design begins
January 2000 Versata class

Development begins with 120 people

August 2000 Development scales back to 60 people
Ongoing Iterative development -

build

test

release

Build 38 implemented

January 2002 Deployment

With initially 120 developers on the project and the design work already
completed, AMS launched into development in January 2000. Versata
conducted an immersion-style training program for the first wave of 15
developers. After that, AMS adopted a "train the trainer" approach due to the size
of its development team and moved the training in-house.

AMS estimates they could have implemented the application more quickly if they
had not scaled back effort midstream due to other business priorities. Therefore,
AMS calculated that Versata saved them at least 12 months in the development
process in terms of both providing the server for the application's business logic
as well as in the construction of the application user interface itself.

One of the most valuable and critical aspects of the development process for
AMS was the ability to review key functionality and enhancements with its
customer base. Nearly a year into development, AMS reviewed its initial
implementation with its customers. It was determined that significant changes
needed to be made to key functionality as well as to the overall "look-and-feel" of
the application. Due to the high degree of flexibility derived from Versata's
declarative approach, the new changes and a complete new design were
implemented and put into user testing in only three months' time.

Chapter 12. A Versata Case Study: American Management Systems 221

This iterative development cycle, a concept that Versata directly enables, was a
key risk mitigation strategy for AMS. According to Keene, "making critical
changes even during development is far easier to make with Versata regardless
of how far down the path you are."

12.3.6 Development/deployment issues

Due to the nature and sophistication of the AMS application, the relationship
between AMS and the Versata engineering team was critical particularly in
addressing performance benchmarks, high volume transaction requirements,
and feature enhancements based on feedback from the AMS team. Because of
AMS' unique transactional model (for example, partial rollback), AMS required
very close interaction with Versata's engineering team to implement that level of
customization. Being able to finely tune and test the ADVANTAGE application
was critical. Keene stated, "Both Versata and IBM stepped up to the plate in
insuring that we met the levels required by the application."

12.4 The bottom line and the future

Not only has AMS received significant benefits from using the Versata Logic
Server in their ADVANTAGE application, Keene believes that using the Versata
Logic Server in its next application for Human Resources and Payroll will
generate even more significant savings. AMS predicts the effort with Versata to
equal nine months worth of development time instead of the 18 months
previously scoped, meaning AMS expects to realize a 50 percent savings in
future development efforts.

Looking forward, AMS also sees the importance of building more institutional
knowledge into the system where business analysts can have greater access to
the business logic. With the median age of state and local employees rising,
institutional knowledge on how operations and processes work are at risk of
being lost as they are not documented in any system. This is critical in an
environment were legislative or local mandates require significant changes to the
application. According to Keene, "There is at least 20% that can't be planned for
as new rules and requirements continually impact business processes. Business
analysts will need to have greater access to the business logic directly and be
able to make changes as needed. The declarative business logic approach
documents this knowledge and makes it accessible across the organization."

222 Application Development Using the Versata Logic Suite for WebSphere

AMS believes that the Versata Logic Server enabled them to meet their original
objectives of reducing development costs and insuring their customers achieve a
level of flexibility in easily making changes to the application. Titmus offered that
"by using Versata to upgrade ADVANTAGE, we were not only able to use our
existing staff resources, but also to get to market quickly in order to remain
competitive and are able to easily change and customize the application to meet
customer demands."

Note: Reprinted by permission of:

Versata, Inc. 300 Lakeside Drive, Suite 1500, Oakland, CA 94612 USA
www.versata.com

toll-free 1.800.984.7638

ph 510.238.4100

fx 510.238.4101

Chapter 12. A Versata Case Study: American Management Systems 223

224 Application Development Using the Versata Logic Suite for WebSphere

Benchmark results

IBM provides the WebSphere Performance Benchmark Sample (Trade2
application) to bring a robust model application to the industry for two purposes.
One reason is to give customers the ability to model their own J2EE platform
technology-compliant applications against a sample for best-practice approaches
to writing applications. Another reason was to provide customers and ISVs with
an application to test the performance of systems.

At IBM's suggestion, Versata ported the business logic layer of the Performance
Benchmark Sample from the set of components created by IBM with VisualAge
for Java to an equivalent set of components created automatically by Versata.
The purpose of the port, and subsequent benchmark activities, was to test and
compare scalability and throughput of the two approaches.

© Copyright IBM Corp. 2002. All rights reserved. 225

Benchmark configuration

The benchmark was conducted in September 2001 on the following hardware
and software configuration.

Application
IBM Trade Benchmark 2.5.3.

Configuration 1

The IBM primary mode was used. The application was accessed through the
TradeAppServlet (client tier). Server logic included the Trade session bean and
CMP entity beans. A variety of EJB optimizations were employed including
VisualAge for Java Access Beans to EJBs, caching of JNDI look-ups and
course-grained objects access. Components are detailed in the presentation
“High Performance Web Apps” (trade2Performance.pdf) provided with the
benchmark download from IBM.

Configuration 2

The Versata primary model was used. The application was accessed through the
TradeAppServlet (client tier). Server logic included Versata Logic Server
components automatically compiled from rules. Versata components were
deployed with optional EJB-interfaces. Access was through Versata-client
libraries.

Hardware and software

The test was run on WebSphere Application Server, Advanced Edition, Version
3.5.4. The WebSphere platform was a 4 CPU Dell PowerEdge 6300 running NT
4.0 SP5. The WebSphere Application Server accessed a single database system
with the same configuration (4 CPU Dell PowerEdge 6300).

The benchmark was driven by 2, 2 CPU Dell PowerEdge 2400's executing
LoadRunner Controller 6.5 software to simulate the client load.

Twenty-minute performance intervals were used for each configuration. The
recommended IBM procedure was followed before each run to reset the Trade
runtime to a clean starting point.

226 Application Development Using the Versata Logic Suite for WebSphere

Results

The results displayed in Figure A-1 show less than a 3% difference between the
IBM primary mode (Configuration #1) and the Versata primary mode
(Configuration #2). The average throughput for Configuration #1 was 258
transactions per second. The average throughput Configuration #2 was 250
transactions per second.

The results suggest that the performance and scalability of the WebSphere
Application Server is equally effective regardless of whether the application logic
was developed and optimized by hand, through VisualAge for Java, or created
automatically by Versata. See Figure A-1.

300

258 250
250 —

200 |:|

Average IBM - Optimized EJB
Transactions 150 (VAJ Access Beans)

Per -

Second
100 Versata Out-ofthe-box EJB
(Versata Client Libraries)

50

0
4 CPU, NT 4.0, WehSphere 3.5.4

,,,,,,,,,,,,,, Forre e

Figure A-1 Benchmark results

Appendix A. Benchmark results 227

Extrapolation to extended Trade2 logic

Although the WebSphere Performance Benchmark Sample was designed to be
more realistic than other Web benchmarks in the industry, the business logic is
still rather simple. Extending that logic, as we do in this Redbook, will involve
significantly more interactions between EJB components. This intra-object logic
is optimized is currently optimized by Versata through its local Java class
“shadows” for EJBs.

Therefore, we can extrapolate that Versata-based applications may not
experience the performance hit that is typically incurred by EJB-intensive
applications. This performance advantage may persist, at least until the EJB 2.0
specification (with local object capabilities) is fully implemented by the application
server.

228 Application Development Using the Versata Logic Suite for WebSphere

Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material

The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246510

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246510.

Using the Web material

The additional Web material that accompanies this redbook includes the
following files:

File name Description
$G246510.zip Zipped Code Samples

© Copyright IBM Corp. 2002. All rights reserved. 229

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material

The following system configuration is recommended:

Hard disk space: 20MB minimum
Operating System: Windows 2000
Processor: Pentium 3 or higher
Memory: 512MB or more

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

Refer to Chapter 10, “Integrating Versata Logic Suite with WebSphere Studio

Application Developer” on page 167 for information in how to use the Web
material.

230 Application Development Using the Versata Logic Suite for WebSphere

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks”
on page 231.

» Web Services Wizardy with WebSphere Studio Application Developer,
SG24-6292

Referenced Web sites

These Web sites are also relevant as further information sources:

» Versata Corporation
http://www.versata.com

» IBM Patterns for e-business
http://www.ibm.com/developerworks/patterns

» Trade Application
http://www.ibm.com/software/webservers/appserv/wpbs_download.html

» Business Rules Group

http://www.businessrulesgroup.org

How to get IBM Redbooks

You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

© Copyright IBM Corp. 2002. All rights reserved. 231

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

IBM Redbooks collections

Redbooks are also available on CD-ROMs. Click the CD-ROMSs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.

232 Application Development Using the Versata Logic Suite for WebSphere

Index

A

A constraint to limit margin selling 140

Account attributes for display 90

Account Record source properties - HTML object
tab 89

Account RecordSource on the home page 84
Account relationships and referential integrity 34
Action example 30

activity diagrams 195

Add relationship rules 62

Adding business object method to the remote inter-
face 162

Adding new data object 122

Adding transaction attributes and validations 123
Agent pattern 8

Allowing one Holding row to be inserted 100
Alternative for JSP access - Versata JSP Toolkit
163

American Management Systems 211

AMS 211

AMS - ADVANTAGE system architecture 219
AMS - application 216

AMS - project 215

AMS - specific look at performance 217

AMS - team 215

AMS - technical decision process 213

AMS - Versata decision 214

Analyze interesting state changes 200
Application and Runtime patterns 3

Application pages before transitions 102
approaches for developing in Versata when using
RUP 194

Archetypes - a brief overview 83

Architecture of the Versata Logic Server within Web-
Sphere 39

As-is host pattern 7

Assigning data objects to the TradeX data server
111

Attaching the enterprise application to the server
184

Attaching to server configuration 185
automatically optimized for runtime 24

© Copyright IBM Corp. 2002. All rights reserved.

B

Basic business logic in Trade 17

Beginning application design 82

Beginning client application deployment 114
Beginning the getPortfolio() method 159
Beginning to deploy the business logic tier 105
Benchmark - Application 226

Benchmark - Configuration 1 226

Benchmark - Configuration 2 226

Benchmark - Hardware and software 226
Benchmark - Results 227

Benchmark configuration 226

Benchmark results 225

Building the query for the home page 93
Business logic automation using rules 19
Business object deployed as local classes with EJB
faces 47

Business object deployment 104

Business patterns 2, 4

Business uses of rules 31

C

Calling a method to return the commission 138
Changes to TradeAltAccess to accommodate Ver-
sata 153

Characteristics of rules 24

Choosing Account/Holding client coordination 96
Choosing displayed attributes for Holding 98
Choosing the application style 82

Choosing the archetype for Holdings 97
Choosing the archetype for the Account Record
source 85

Choosing the archetype for the home page 86
Classification of declarative logic (rules) 26
Classpath variable setup 172

Client application deployment 114

client libraries 56

Collaboration pattern 4

Compiling the Versata application in debug mode
170

Completing the application design 102
Completing the business object deploymentprocess
105

233

Completing the Relationship rule 63

Component directories in the Application Deploy-
ment Wizard 115

Composite patterns 2

Computing a new GrossProfit attribute in the query
145

conceptual class diagrams 197

Concluding the TradeX extended business logic
149

Configuring the server instance 185

Configuring the server to test the application 182
Confirming application deployment 116
Connecting to a custom connector class 206
Connectivity to non-Versata client-tiers 207
Connector layer 50

connectors 56

Constraint example 29

Construction Phase 194

Container managed EJBs 16

Copying the required files 169

Create a new repository 61

create and test Servlets, JSPs, and Enterprise Java
Beans 168

Creating "QueryObjects" 142

Creating a classpath variable for the Versata install
directory 171

Creating a non-persisted attribute for the transaction
amount 67

Creating a server instance and configuration 182
Creating data server properties 110

Creating the Account/Holding relationship 62
Creating the Portfolio page 101

Creating the Profile page 101

Creating the source EAR file 170

Custom connectivity 205

Customized presentation to host pattern 7

D

data objects 55

Data objects (left) and account attributes and rules
(right) 43

Database deployment 106

Database schema 15

Database scheme 15

Debit and credit methods added to the Account Java
source 70

Debiting the account balance in a transaction 130
Debugging your application 190

declarative 24

Declaring the buy() method 157

Decomposition pattern 7

Defining the action to debit the user's Account 71
Defining the data objects to be joined in a QueryOb-
ject 143

Defining the QueryObject sort order 146
Defining the transaction and holding relationship
125

Defining the ValidTransTypes as a coded value list
127

Defining TradeX users to the logic server 112
Defining transaction primary and foreign keys 124
Deploying the TradeX application 103
deployment to database 107

Derivation example 28

Deriving AccType from total assets and number of
transactions 136

Deriving QtyOnHand of a holding 134

Design and runtime environment 21

Designing an HTML client application 73
Designing the Home page 84

Designing the QuoteBuy page 94

Detail class diagrams 204

Details of the Trade EJB implementation 15
Developing with UML and rules 193

Directly integrated single channel pattern 6

E

EAR import 177

EAR module import 179

Editing transition properties 92

EJB 2.0 - Container Managed Relationships (CMR)
52

EJB 2.0 - local interfaces 53

Elaborate key use cases 200

Elaboration Phase 194

End-to-end processing 17

Enhancing TradeX business logic 119

Example of a rule 22

Executing an application from the Versata Studio
117

Executing deployed applications 117

Exporting the application from WSAD 191
Extended Enterprise 4

Extrapolation to extended Trade2 logic 228

234 Application Development Using the Versata Logic Suite for WebSphere

F

Firewall and hot backup configuration 42
For the logic server EJB itself 55

Four service objectives 55

G

Generating business and application logic reports
118

Granting access to TradeX users 112

Granting permissions to the TradeX role 113
GUIDE Business Rule Project 27

H

Handling potential exceptions 158

high-level policy model 196

Home 148

Home page 78

Home page tab is based on the "TransProfit" Query-
Object 148

|

IBM Patterns for e-business 2

Identify additional rules 64

Import an object model 60

Import DB2 schema and view data objects and at-
tributes 61

Import the application into the repository 191
Importing applications into WSAD 171

Importing EAR jar file 173

Importing modified application into Versata 191
Importing the Versata Logic Server code 172
Importing your Versata application EAR file into
WSAD 177

Inception Phase 194

Inference example 29

Information Aggregation pattern 4

Initializing the VSSession, VSQuery and VSResult-
Set 157

Integrated testing with WebSphere Application
Server 168

Integrating the IBM Trade2 client 151

Integrating Versata Logic Suite with WebSphere
Studio Application Developer 167

Integration patterns 2

Introduction to the Versata Studio Business Logic
Designe 58

Iterating over the ResultSet 159

J

J2EE applications 168

Java Connector Architecture (JCA) 53
Just-in-time objects 49

L

logic for multiple objects 24

logic server EJB 55

Login page 76

Look to the future - EJB 2.0 and JCA 51

M

Main properties tab for the Account Record source
91

Managing the Versata Logic Server in WebSphere
41

Manifest class path 178

map the business assertion to two rules 202
Method 1 - Using the Versata client libraries 152
Method 2 - Utilizing EJB interfaces 160

Model for processing a customer order 195
Model-View-Controller (MVC) architecture 11
Model-View-Controller architecture 11

Modified client application using new business logic
142

Most frequent question - What is it really? 40
Multiple runtime modes 12-13

MVC architecture of the Presentation Engine 75
MVC architecture of the Versata Logic Server 45

N

New application using a style 82

New project name setting 175

New requirements 120

Note on project approaches and roles 58

0]

ODBC system data source name 107

Other J2EE standards used by the logic server 53
Overview of self-service pattern 1

Overview of the completed application 76

P

Passing attributes to a date comparison method
141
Patterns for e-business 3

Index 235

pecifying the pop-up for viewing Quotes 99
Persistence as a layer in the server MVC 45
Portfolio page 80

Potential enhancements to Trade business logic 18
Preparing the EAR file with source 169

Preparing Versata application for import into WSAD
169

process model 195

Processing Trade client requests to Versata busi-
ness objects 153

Profile page 81

Project name input 174

Properties for Holding Record Source on the Portfo-
lio page 101

Properties for the home page 88

Properties for visBeans55_EJB 176

Prototype the user case model using Versata 205

Q

Query object in Trade shows Profit_Loss attribute
44

query objects 56

QuoteBuy page 79

QuoteBuy page and Quote Pick List 79

R
Rational Rose 194
Rational Rose use case for a Versata-automated
functions 198
Rational Unified Process (RUP) 193
Recap of the Versata logic services 54
Redbooks Web site 231
Contactus xi
Refine the page properties 87
Relationship example 27
Requirement 1
Sell partial holdings 121
Requirement 2
Customize rules based on account type 135
Requirement 3
Calculate commissions based on account type
137
Requirement 4
Limit margin selling 139
Restricting a QueryObject with an expression 144
ResultSet access and just-in-time object instantia-
tion 47
ResultSets of objects 48

Retrieving the first row of holdings 159

Return the array of HoldingObjects 160

Returning the new account balance 158

Review of the steps 72

Reviewing or setting the data server 108

Router pattern 7

Rule builder is used to “point-and-click” the rule 68
rule constrains transactions 204

Rule example 28

rule specifying the value of ACTIVE_HOLDING 23
Rule that counts number of transactions for a hold-
ing 131

Rule that restricts short selling 133

rule to enforce business assertion 203

rule to get price from quote object 65

Rule-based development 57

Rule-enabled objects as WebSphere components
46

Rules and EJB domains 25

Rules can automate data validation 31

Rules can automatically synchronize related at-
tributes in different objects 34

Rules can enforce operational policies and respond
to change when policies change 35

Rules can identify interesting data 35

Rules can initiate asynchronous events 36

Rules can preserve the association between related
objects when they change 33

Run on Server 189

Running and debugging the application 187
Running your HTML application 188

RUP phases and iterations 194

S

scope 199

Self-service application patterns 6

Self-service business pattern 5

Self-service pattern 4

Self-service pattern and the Trade application 8
Sending updated ResultSet to logic server 158
server instance creation 183

Servleticon 188

Setting module visibility 184

Setting the build properties for the application EJB
project 180

Setting the build properties for the application Web
project 181

Setting the build properties for the visBeans55_EJB

236 Application Development Using the Versata Logic Suite for WebSphere

project 175

Setting the module visibility 183

Setting the sequence number inside an event 132
Setting the values for the new row 157

Setting up an ODBC Data Source Name (DSN) 106
Specifying a business logic report 118

Specifying the Account Record source on the
QuoteBuy page 95

Stand-alone single channel pattern 6

Standards used for WebSphere version 3.5 54
Starting the server 187

State diagram for an order entity 201

Supported functionality 164

System policy model the Versata SampleDB exam-
ple 197

T
tables to be created in database 108

Tag library overview 165

The TradeAltAccess class from IBM 152

The TradeVFC buy() method 156

The TradeVFC getPortfolio() method 159

The TradeXv2 application 147

The TradeXv2 repository 120

Trade 12

Trade application controller implementation 12
Trade application functionality 10

Trade application overview 9

Trade client design using MVC 11

Trade interface 154

Trade user’s home page 10

TradeVFC method summary 154
TradeVFC.java 154

TradeX application model 74

TradeX home page 78

TradeX login page 76

TradeXv2 home page 147

Transaction and holding relationship details 126
transaction independent 24

Transaction rules - basis for automated business
logic 22

Transfer business logic to the Versata Studio 204
Transition Phase 194

U

UML and rules 193

UML and the Rational Unified Process 194
Unique key autonumbered 66

Universal Modeling Language (UML) 194
unordered 24

updateProfile method 161

use cases and business assertions 197
Use of copy helper access beans 17
Using patterns for e-business 4

Utilize sequence diagrams 201

Vv
Validating transaction types from the coded value
list 128
Validation 32
Validation from a cached list of values 32
Value-based access through Versata client libraries
49
Versata 14
Versata - a new option 14
Versata and the Construction phase 205
Versata and the Elaboration phase 199
Versata and the Inception phase 194
Versata and the Transition phase 208
Versata business objects 43
Versata Case Study

American Management Systems 211
Versata design and execution environments 21
Versata Logic Server 14
Versata Logic Server classes 44
Versata Logic Server Components created by instal-
lation 40
Versata Logic Server console 109
Versata Logic Server EJBs and servlet engine in
WebSphere 41
Versata Logic Server within WSAD 169
Versata Presentation Designer 74
Versata projects - Application developers 59
Versata projects - Systems Architects 59
Versata projects - Systems Level programmers 59
Versata projects - Web technology specialists 59
Versata repository 60
Violation of attribution validation rule on Transac-
tion.Quantity 149
VSQuery 155
VSResultSet 156
VSRow 156
VSSession 155

w

WebSphere console after TradeX business logic de-

Index 237

ployment 104

WebSphere Performance Benchmark Sample 225
WebSphere Studio Application Developer 168
WebSphere Studio Application Developer (WSAD)
167

What are patterns 2

What Versata Logic Suite Is not 36

238 Application Development Using the Versata Logic Suite for WebSphere

Application Development Using the Versata Logic Suite for WebSphere

Redbooks

(0.5” spine)

0.475"<->0.875"
250 <-> 459 pages

Application Development

Using the Versata Logic Suite

for WebSphere

Learn options for

automating business
logic in the EJB-layer

Explore declarative
logic design using
rules

Understand Versata
Logic services in
WebSphere

Patterns for e-business are a group of proven, reusable assets
that can help speed the process of developing applications.
This IBM Redbook demonstrates a method of developing and
managing the business logic in the “self-service business
pattern” (formerly known as the user-to-business pattern).

The book describes the process of developing a stock trading
application, based on the IBM “Trade” benchmark, using
business logic rules to automate the construction and
interaction of the transactional (EJB) components. It
demonstrates substantially enhancing the business logic of
the application through rule changes.

Two methods of constructing the presentation layer of the
application are examined. The first uses Versata presentation
automation techniques. The second adopts the
Model-View-Controller (MVC) framework of the existing IBM
Trade application.

The book demonstrates how to use the JSPs, servlets, and
Java beans of the existing Trade application to interface to the
EJB-based business logic and explains the role of the runtime
Versata logic services installed into the WebSphere
Application Server.

SG24-6510-00 ISBN 0738424218

=4G)

Redhooks

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic

scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Overview of self-service pattern
	1.1 Patterns, defined
	1.2 IBM Patterns for e-business
	1.2.1 Business patterns
	1.2.2 Using patterns for e-business

	1.3 Self-service business pattern
	1.3.1 Self-service application patterns

	1.4 Self-service pattern and the Trade application

	Chapter 2. Trade application overview
	2.1 Trade application functionality
	2.1.1 Trade client design using MVC
	2.1.2 Multiple runtime modes

	2.2 Versata: a new option
	2.3 Details of the Trade EJB implementation
	2.3.1 Database schema
	2.3.2 Container managed EJBs
	2.3.3 Use of copy helper access beans
	2.3.4 Basic business logic in Trade

	2.4 Potential enhancements to Trade business logic

	Chapter 3. Business logic automation using rules
	3.1 Scenarios for automating WebSphere applications
	3.2 Design and runtime environment
	3.3 Transaction rules for automated business logic
	3.3.1 Example of a rule
	3.3.2 Characteristics of rules
	3.3.3 Rules and EJB domains
	3.3.4 Classification of declarative logic (rules)

	3.4 Business uses of rules
	3.5 What the Versata Logic Suite is not

	Chapter 4. Architecture of the Versata Logic Server within WebSphere
	4.1 What the Versata Logic Server is, and how it works
	4.2 Managing the Versata Logic Server in WebSphere
	4.3 Versata business objects
	4.4 Versata Logic Server classes
	4.4.1 Persistence as a layer in the server MVC
	4.4.2 Rule-enabled objects as WebSphere components
	4.4.3 ResultSet access and just-in-time object instantiation

	4.5 Looking to the future: EJB 2.0 and JCA
	4.5.1 EJB 2.0: Container Managed Relationships (CMR)
	4.5.2 EJB 2.0: local interfaces
	4.5.3 Java Connector Architecture (JCA)
	4.5.4 Other J2EE standards used by the logic server
	4.5.5 Recap of the Versata logic services

	Chapter 5. Rule-based development
	5.1 Introducing Versata Studio Business Logic Designer
	5.1.1 Project approaches and roles
	5.1.2 Versata repository

	5.2 Step 1: Importing an object model
	5.3 Step 2: Adding relationship rules
	5.4 Step 3: Identifying additional rules
	5.5 Review of the steps

	Chapter 6. Designing an HTML client application
	6.1 Versata Presentation Designer
	6.2 Overview of the completed application
	6.2.1 Login page
	6.2.2 Home page
	6.2.3 QuoteBuy page
	6.2.4 Portfolio page
	6.2.5 Profile page

	6.3 Beginning application design
	6.3.1 Choosing the application style
	6.3.2 Archetypes: a brief overview
	6.3.3 Designing the Home page
	6.3.4 Designing the QuoteBuy page
	6.3.5 Creating the Portfolio page
	6.3.6 Creating the Profile page

	6.4 Completing the application design

	Chapter 7. Deploying the TradeX application
	7.1 Business object deployment
	7.2 Database deployment
	7.2.1 Setting up an ODBC Data Source Name (DSN)

	7.3 Reviewing or setting the data server
	7.4 Granting access to TradeX users
	7.5 Client application deployment
	7.6 Executing deployed applications
	7.7 Generating business and application logic reports

	Chapter 8. Enhancing TradeX business logic
	8.1 New requirements
	8.2 The TradeXv2 repository
	8.2.1 Requirement 1: Sell partial holdings
	8.2.2 Requirement 2: Customize rules based on account type
	8.2.3 Requirement 3: Calculate commissions based on account type
	8.2.4 Requirement 4: Limit margin selling

	8.3 Modified client application using new business logic
	8.3.1 Capability 1: Creating QueryObjects

	8.4 The TradeXv2 application
	8.5 Concluding the TradeX extended business logic

	Chapter 9. Integrating the IBM Trade2 client
	9.1 Method 1: Using the Versata client libraries
	9.1.1 The TradeAltAccess class from IBM
	9.1.2 Changes to TradeAltAccess to accommodate Versata
	9.1.3 TradeVFC.java
	9.1.4 The TradeVFC buy() method
	9.1.5 The TradeVFC getPortfolio() method

	9.2 Method 2: Utilizing EJB interfaces
	9.3 Alternative for JSP access: Versata JSP Toolkit
	9.3.1 Supported functionality
	9.3.2 Tag library overview

	9.4 Conclusion

	Chapter 10. Integrating Versata Logic Suite with WebSphere Studio Application Developer
	10.1 Introduction
	10.1.1 WebSphere Studio Application Developer
	10.1.2 Integrated testing with WebSphere Application Server

	10.2 Versata Logic Server within WSAD
	10.2.1 Preparing Versata application for import into WSAD
	10.2.2 Importing applications into WSAD
	10.2.3 Configuring the server to test the application
	10.2.4 Running and debugging the application

	10.3 Importing modified application into Versata
	10.3.1 Exporting the application from WSAD
	10.3.2 Import the application into the repository

	Chapter 11. Developing with UML and rules
	11.1 UML and the Rational Unified Process
	11.2 RUP phases and iterations
	11.2.1 Versata and the Inception phase
	11.2.2 Versata and the Elaboration phase
	11.2.3 Versata and the Construction phase
	11.2.4 Versata and the Transition phase

	11.3 Conclusion: Rule-based design and development

	Chapter 12. A Versata Case Study: American Management Systems
	12.1 The technical decision process
	12.2 The Versata decision
	12.3 The project
	12.3.1 The team
	12.3.2 The application
	12.3.3 A specific look at performance
	12.3.4 System architecture
	12.3.5 The schedule
	12.3.6 Development/deployment issues

	12.4 The bottom line and the future

	Appendix A. Benchmark results
	Benchmark configuration
	Results
	Extrapolation to extended Trade2 logic

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

